

Real Time PCR Detection Kit

Respiratory Virus Extended Mix for BD MAX™ System Instrucciones de uso

Estas instrucciones de uso aplican para las siguientes referencias:

PRODUCTO	REFERENCIA
VIASURE <i>Respiratory Virus Extended Mix</i> Real Time PCR Detection Kit for BD MAX™ System	444221

Tabla A 1. Referencia del producto para ser utilizado con el Sistema BD MAX™.

EN For download IFUS from other languages, please enter in **certest.es/viasure/labeling**. Once you be there, please following the instructions for access to the language that you need. If you need additional information, please contact: viasure@certest.es.

BG За да изтеглите IFUS на други езици, моля, отидете на **certest.es/viasure/labeling**. След това следвайте инструкциите, за да получите достъп до необходимия ви език. Ако имате нужда от допълнителна информация, моля, свържете се с: <u>viasure@certest.es</u>.

CS Chcete-li si stáhnout IFUS v jiných jazycích, přejděte na stránku **certest.es/viasure/labeling**. Jakmile se tam dostanete, postupujte podle pokynů pro přístup k požadovanému jazyku. Pokud potřebujete další informace, kontaktujte prosím: viasure@certest.es.

DA Hvis du vil downloade IFUS på andre sprog, kan du gå til **certest.es/viasure/labeling**. Når du er der, skal du følge instruktionerne for at få adgang til det sprog, du har brug for. Hvis du har brug for yderligere oplysninger, kan du kontakte: viasure@certest.es.

DE Um den IFUS in anderen Sprachen herunterzuladen, gehen Sie bitte zu **certest.es/viasure/labeling**. Wenn Sie dort sind, folgen Sie den Anweisungen, um auf die gewünschte Sprache zuzugreifen. Wenn Sie weitere Informationen benötigen, wenden Sie sich an: viasure@certest.es.

EL Για να κατεβάσετε το IFUS σε άλλες γλώσσες, μεταβείτε στη διεύθυνση certest.es/viasure/labeling. Μόλις φτάσετε εκεί, ακολουθήστε τις οδηγίες για να αποκτήσετε πρόσβαση στη γλώσσα που χρειάζεστε. Εάν χρειάζεστε πρόσθετες πληροφορίες, επικοινωνήστε με τη διεύθυνση: viasure@certest.es.

ES Para descargar las IFUS en otros idiomas, por favor, entre en certest.es/viasure/labeling. Una vez esté allí, siga las instrucciones para acceder al idioma que necesite. Si necesita información adicional, contacte: viasure@certest.es.

FR Pour télécharger l'IFUS dans d'autres langues, veuillez vous rendre sur certest.es/viasure/labeling. Une fois sur place, suivez les instructions pour accéder à la langue dont vous avez besoin. Si vous avez besoin d'informations supplémentaires, contactez: viasure@certest.es.

HR Za preuzimanje IFUS-a s drugih jezika unesite certest.es/viasure/labeling. Kada ste tamo, slijedite upute za pristup jeziku koji vam je potreban. Ako trebate dodatne informacije, obratite se na: viasure@certest.es.

HU Az IFUS más nyelveken történő letöltéséhez kérjük, látogasson el a **certest.es/viasure/labeling** weboldalra. Ha ott van, kövesse az utasításokat a kívánt nyelv eléréséhez. Ha további információra van szüksége, kérjük, forduljon a következő címre: viasure@certest.es.

IT Per scaricare l'IFUS in altre lingue, vai su certest.es/viasure/labeling. Una volta che sei lì, segui le istruzioni per accedere alla lingua di cui hai bisogno. Se hai bisogno di ulteriori informazioni, contatta: viasure@certest.es.

LT Norėdami atsisiųsti IFUS kitomis kalbomis, eikite į certest.es/viasure/labeling. Ten atlikite nurodymus, kad pasiektumėte reikiamą kalbą. Jei reikia papildomos informacijos, kreipkitės adresu: viasure@certest.es.

LV Lai lejupielādētu IFUS citās valodās, lūdzu, apmeklējiet certest.es/viasure/labeling. Pēc tam izpildiet norādījumus, lai piekļūtu vajadzīgajai valodai. Ja nepieciešama papildu informācija, lūdzu, sazinieties ar: viasure@certest.es.

NB For å laste ned IFUS fra andre språk, gå inn på certest.es/viasure/labeling. Når du er der, kan du følge instruksjonene for å få tilgang til det språket du trenger. Hvis du trenger ytterligere informasjon, kan du kontakte: <u>viasure@certest.es</u>.

PT Para baixar o IFUS em outros idiomas europeus, acesse **certest.es/viasure/labeling**. Uma vez lá, siga as instruções para acessar o idioma que você precisa. Se você precisar de informações adicionais, entre em contato: <u>viasure@certest.es</u>.

RO Pentru a descărca IFUS în alte limbi, vă rugăm să accesați **certest.es/viasure/labeling.** Accesat site-ul, urmați instrucțiunile pentru a selectiona limba necesară. Pentru informații suplimentare, contactați: <u>viasure@certest.es</u>.

SV För att ladda ner IFUS från andra språk, vänligen gå in på **certest.es/viasure/labeling**. När du är där följer du instruktionerna för att få tillgång till det språk du behöver. Om du behöver ytterligare information, vänligen kontakta: viasure@certest.es.

SK Ak si chcete stiahnuť IFUS v iných jazykoch, prejdite na stránku **certest.es/viasure/labeling**. Keď sa tam dostanete, postupujte podľa pokynov a získajte prístup k požadovanému jazyku. Ak potrebujete ďalšie informácie, obráťte sa na: <u>viasure@certest.es</u>.

TR IFUs'u diğer dillerden indirmek için lütfen **certest.es/viasure/labeling** adresine girin. Oraya girdikten sonra, lütfen ihtiyacınız olan dile erişim için talimatları takip edin. Daha fazla bilgiye ihtiyacınız varsa, lütfen <u>viasure@certest.es</u> adresinden iletişime geçin.

FI Lataa suomeksi turvallinen käyttöopas osoitteesta **certest.es/viasure/labeling**. Kun olet siellä, seuraa ohjeita. Jos tarvitset lisätietoja, ota yhteyttä: <u>viasure@certest.es</u>.

Consulte **certest.es/viasure/labeling** si su idioma no está en la lista. Contacte con <u>viasure@certest.es</u> si su idioma no está en la página web.

Nota: El usuario debe notificar al fabricante y a la autoridad competente del Estado miembro en el que esté establecido como usuario y/o paciente cualquier incidencia grave relacionada con el producto.

Contenido

1.	Finalidad prevista	6
2.	Introducción y explicación	6
3.	Procedimiento	9
4.	Reactivos suministrados	. 10
5.	Reactivos y equipos a suministrar por el usuario	. 10
6.	Condiciones de transporte, almacenamiento y uso	. 11
7.	Precauciones para el usuario	. 12
8.	Procedimiento del test	. 14
8.1.	Recogida, transporte y almacenamiento de muestras	. 14
8.2.	Preparación de la muestra y extracción de NA	. 15
8.3.	Protocolo PCR	. 16
8.3.1.	Programación del test VIASURE <i>Respiratory Virus Extended Mix</i> Real Time PCR Detection Kit for MAX TM System	
8.3.2.	Preparación de la gradilla del sistema BD MAX TM	. 22
8.3.3.	Configuración del instrumento BD MAX™	. 23
8.3.4.	Informe BD MAX™	. 24
9.	Interpretación de resultados	. 24
10.	Limitaciones del test	. 29
11.	Control de calidad	. 31
12.	Características analíticas del funcionamiento del test	. 32
12.1.	Linealidad analítica	. 32
12.2.	Sensibilidad analítica. Límite de Detección (LoD)	.34
12.3.	Rango de medición	. 35
12.4.	Exactitud	. 35
12.4.1.	Veracidad (Sesgo)	. 35
12.4.2.	Precisión	. 41
12.5.	Arrastre	. 46
12.6.	Tasa de fallo de todo el Sistema	. 47

12.7.	Especificidad y reactividad analítica	47
12.7.1.	Especificidad analítica	48
12.7.2.	Reactividad analítica	53
12.8.	Trazabilidad metrológica	57
13.	Características del funcionamiento clínico	57
Bibliog	rafía	59
Símbolo	os para reactivos y productos para diagnóstico <i>in vitro</i>	61
Marca	registrada	61

ESPAÑOL

1. Finalidad prevista

VIASURE Respiratory Virus Extended Mix Real Time PCR Detection Kit for BD MAX™ System es una prueba de RT-qPCR automatizada diseñada para la detección cualitativa y simultánea de RNA/DNA de SARS-CoV-2, Influenza A, Influenza B, RSV (tipos A y B), parainfluenza (tipos 1, 2, 3 y 4), coronavirus humano (229E, NL63, HKU1 y OC43), metapneumovirus y adenovirus en hisopos nasofaríngeos de pacientes con sospecha de infección respiratoria por su profesional de la salud (PS). El uso previsto del test es ayudar en el diagnóstico de la infección por los microorganismos anteriormente mencionados en combinación con los signos y síntomas clínicos de los pacientes y/o los factores de riesgo epidemiológicos. Los resultados positivos indican la presencia de ácidos nucleicos (NA) diana, pero no excluyen la presencia de otros patógenos no detectados por la prueba. Los resultados negativos no excluyen la presencia de los NA diana y no deben utilizarse como única base para el tratamiento u otras decisiones de gestión del paciente. Este test utiliza el sistema BD MAX™ para llevar a cabo la extracción automatizada del RNA/DNA y posterior RT-qPCR utilizando los reactivos suministrados junto con los reactivos universales y desechables del sistema BD MAX™. El RNA/DNA es extraído de las muestras. El DNA complementario (cDNA) se sintetiza, y DNA/cDNA se amplifican mediante RT-qPCR y se detectan utilizando sondas marcadas con una molécula fluorescente específicas para SARS-CoV-2, Influenza A, Influenza B, RSV (tipos A y B), parainfluenza (tipos 1, 2, 3 y 4), coronavirus humano (229E, NL63, HKU1 y OC43), metapneumovirus y adenovirus.

El producto está destinado a ser utilizado por personal de laboratorio clínico cualificado y capacitado, instruido y entrenado específicamente en las técnicas de PCR en tiempo real y en los procedimientos de diagnóstico *in vitro* (incluida la capacitación en el instrumento de PCR en tiempo real (termociclador) y el sistema de extracción de ácido nucleico).

2. Introducción y explicación

El Coronavirus tipo 2 del Síndrome Respiratorio Agudo Grave, o SARS-CoV-2 tal como se le conoce comúnmente, es el virus respiratorio responsable de la enfermedad COVID-19, que surgió a finales del 2019, y que fue posteriormente categorizada como pandemia mundial por la OMS (Fernández-Pérez et al., 2021; Hu et al., 2021; WHO | World Health Organization, 2023a). Este nuevo coronavirus es un virus de RNA monocatenario que se ha incluido en la familia *Coronaviridae*, género beta (Fernández-Pérez et al., 2021). La infección por SARS-CoV-2 puede afectar tanto a adultos como a niños, aunque tanto las personas mayores de 60 años como aquellas con afecciones médicas preexistentes son más propensas a sufrir una forma más grave de la enfermedad (WHO | World Health Organization, 2023a). La infección puede ser asintomática, o dar lugar a varios síntomas tanto de baja como de alta intensidad y gravedad, muy similares a la gripe (CDC I, 2023; Safiabadi Tali et al., 2021).

La gripe es una infección respiratoria aguda causada por el virus Influenza, que afecta al tracto respiratorio, y que puede encontrarse en circulación por todo el mundo (Uyeki et al., 2022; WHO | World Health Organization, 2023b). En particular, la gripe estacional está provocada por los virus Influenza A e Influenza B estacionales, ambos responsables de las epidemias estacionales que normalmente se dan en los periodos invernales de climas templados, y de las infecciones durante todo el año que se dan en áreas tropicales (Tyrrell et al., 2021; Uyeki et al., 2022; WHO | World Health Organization, 2023b). Los virus influenza, parte de la familia *Orthomyxoviridae*, son virus de RNA monocatenario de ocho segmentos de sentido negativo, que codifican 12 proteínas virales (Krammer et al., 2018; Uyeki et al., 2022). La envoltura viral, derivada de la membrana plasmática del hospedador, consiste en una bicapa lipídica que contiene las proteínas transmembrana hemaglutinina (HA), neuraminidasa (NA), la nucleoproteína viral (VP), la proteína de la matriz (M1) y proteína de la membrana (M2) (Krammer et al., 2018).

El Virus Respiratorio Sincitial (RSV) es otro virus respiratorio y estacional que afecta el tracto respiratorio inferior de todos los grupos de edad (WHO | World Health Organization, n.d.). Este virus de RNA monocatenario, no segmentado, y de sentido negativo, miembro de la familia *Pneumoviridae*, es conocido por afectar principalmente a niños pequeños menores de 2 años, pero también puede afectar de manera severa a adultos mayores de 65 y/o personas inmunocomprometidas, o con comorbilidades específicas (Abu-Raya et al., 2023; Bergeron & Tripp, 2021; WHO | World Health Organization, n.d.).

El diagnóstico de las mencionadas enfermedades respiratorias es desafiante porque normalmente comparten síntomas comunes (Uyeki et al., 2022). Por ello, es clave un diagnóstico fiel, no solo para conocer la causa de la enfermedad, sino también para poder anticipar olas epidémicas/pandémicas, y así mitigar el impacto colateral que supone en los Sistemas de Salud y de Economía (Safiabadi Tali et al., 2021; Uyeki et al., 2022). Hay disponibles varios tipos de pruebas diagnósticas (pruebas de diagnóstico en el lugar de asistencia (Point-of-care en inglés), o detección rápida de antígenos), sin embargo, la RT-PCR es más sensible y específica, a la vez que permite combinar la detección de varios virus respiratorios circulantes al mismo tiempo, reduciendo así el tiempo de diagnóstico (Uyeki et al., 2022).

Las enfermedades del tracto respiratorio inferior son responsables de, aproximadamente, cuatro millones de muertes anuales a nivel mundial. Una gran cantidad de virus son responsables de esto, entre ellos los Coronavirus, pertenecientes a la familia de los *Coronaviridae* (Friedman et al., 2018). Estos virus, distribuidos a nivel global, se caracterizan por ser virus envueltos con un genoma de RNA de cadena sencilla con polaridad positiva (Lim et al., 2016; Zeng et al., 2018), y estar directamente relacionados con enfermedades del tracto respiratorio, digestivo o del Sistema Nervioso Central. Los Coronavirus están divididos en tres grupos o serotipos: el 1 y 2, que comprenden a los Coronavirus de mamíferos, y el grupo 3, a los Coronavirus aviarios. Las cepas de Coronavirus que afectan a los humanos de forma más común son HCoV-299E, HCoV-OC43, HCoV-NL63 y HCoV-HKU1 (Zeng et al., 2018). Los Coronavirus humanos son difíciles de diagnosticar, por ser normalmente co-identificados con otros virus respiratorios, como los virus de la gripe o el virus

respiratorio sincitial (Gaunt et al., 2010). Es por ello que la PCR en Tiempo Real ha demostrado ser uno de los métodos más efectivos gracias a su especificidad. Concretamente, la PCR en Tiempo Real, que establece como diana el gen N de las cepas HCoV-229E, HCoV-OC43 y HCoV-NL63 y el gen rep en el caso de la cepa HCoV-HKU1.

Los virus de la parainfluenza (PIV o HPIV en humanos) son parte de la familia Paramyxoviridae y se clasifican genética y antigénicamente en cuatro tipos. Estos virus pueden provocar infecciones respiratorias en bebés, niños y adultos, variando el tipo de infección y los síntomas específicos según el tipo. El HPIV-1 y el HPIV-2 causan enfermedades respiratorias altas y bajas, como resfriados y crup, siendo el HPIV-1 el más común en niños. El HPIV-3 se asocia más frecuentemente con afecciones respiratorias bajas, como bronquiolitis, bronquitis y neumonía. El HPIV-4 es menos reconocido pero aún puede causar enfermedades respiratorias leves a severas (Henrickson, 2003). Parainfluenza son virus con envoltura de tamaño mediano y cuyos genomas consisten en un RNA monocatenario de sentido negativo (ssRNA-), el cual codifica al menos seis proteínas estructurales comunes. Estos virus presentan en la envoltura vírica dos glicoproteínas: la proteína de fijación viral Hemaglutinina-Neuraminidasa (HN), que también causa hemadsorción y hemaglutinación, y la proteína de fusión (F) (Henrickson, 2003).

El cultivo viral en combinación con la inmunofluorescencia son el método tradicional para el diagnóstico de estos virus, pero consume mucho tiempo (Templeton et al., 2004). Los test de detección de antígenos son ampliamente utilizados, pero son menos sensibles y específicos que otras herramientas de diagnóstico como los ensayos de PCR a tiempo real (Jansen et al., 2011; Templeton et al., 2004). Por lo tanto, actualmente este último se considera uno de los mejores métodos de elección.

Los adenovirus pertenecen a la familia *Adenoviridae* de virus no envueltos y de doble cadena (dsADN) (Datta, 2023; Ison & Hayden, 2016). Existen más de 50 serotipos de Adenovirus humanos inmunológicamente distintos (Lynch & Kajon, 2016) clasificados en 7 especies (Adenovirus-A a Adenovirus-G) que pueden causar infecciones humanas que van desde enfermedades respiratorias (Adenovirus-E, C y algunas especies B) a infecciones del tracto digestivo (principalmente especies Adenovirus-A y F), infecciones del tracto urinario (otras especies Adenovirus-B) y conjuntivitis (Adenovirus-D) (Buckwalter et al., 2012; Datta, 2023). La transmisión puede producirse por inhalación de gotitas aerosolizadas, inoculación conjuntival directa, propagación fecal-oral o exposición a tejido o sangre infectados (Ison & Hayden, 2016).

Los Metapneumovirus humanos pertenecen a la familia *Paramyxoviridae* (Schuster & Williams, 2013) y son una causa importante de infección respiratoria en tracto superior e inferior. El Metapneumovirus es un virus encapsulado de RNA monocatenario de sentido negativo. Los síntomas clínicos incluyen tos, fiebre, congestión nasal, dificultad para respirar, y pueden derivar a bronquiolitis o neumonía (Uddin & Thomas, 2020). El Metapneumovirus se transmite principalmente a través de gotas aéreas infecciosas, y se considera el segundo virus más frecuente en infecciones respiratorias, siendo los niños menores de 5 años los más susceptibles a la infección (Schuster & Williams, 2013).

El diagnóstico clínico puede ser problemático, ya que un gran número de agentes patógenos causales de infecciones respiratorias agudas dan lugar a cuadros clínicos similares. Estos virus eran identificados inicialmente mediante cultivo celular, pero su uso para el diagnóstico implicaba mucho tiempo de espera hasta la obtención del efecto citopático. Los test serológicos pueden ser útiles para investigación epidemiológica, pero tienen un valor práctico limitado en el diagnóstico de pacientes individualizados (Datta, 2023; Ison & Hayden, 2016; Lynch & Kajon, 2016; Schuster & Williams, 2013). Por ello, la (RT)-PCR a tiempo real es actualmente el método utilizado para la identificación de Adenovirus y Metapneumovirus, debido a su alta sensibilidad y especificidad.

3. Procedimiento

VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System está diseñado para la detección cualitativa y simultánea de NA de SARS-CoV-2, Influenza A, Influenza B, RSV (tipos A y B), parainfluenza (tipos 1, 2, 3 y 4), coronavirus humano (229E, NL63, HKU1 y OC43), metapneumovirus y adenovirus en hisopos nasofaríngeos. La detección se realiza en un solo paso a través de la retrotranscripción y posterior amplificación a tiempo real de la secuencia diana, produciéndose ambas reacciones en el mismo pocillo. El RNA diana extraído es transcrito generando DNA complementario mediante la transcriptasa reversa. Una vez sintetizado el cDNA o aislado el DNA, la identificación de estos microorganismos se realiza mediante la amplificación de una región conservada de los genes *Ny ORF1ab* de SARS-CoV-2, del gen *M* (proteína de matriz (M1)) de Influenza A/B, del gen *HA* de Influenza A subtipo H1N1, del gen *N* de RSV (tipos A y B), del gen *HN* de parainfluenza (tipos 1, 2 y 3), del gen *F* de parainfluenza (tipo 4), del gen *N* de coronavirus (229E, NL63, HKU1 y OC43), del gen *F* de metapneumovirus y del gen *hexon* de adenovirus, usando cebadores específicos y sondas marcadas con fluorescencia.

VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System utiliza la actividad 5′ exonucleasa de la DNA-polimerasa. Durante la amplificación del DNA, esta enzima hidroliza la sonda unida a la secuencia de DNA complementaria, separando el fluoróforo del *quencher*. Esta reacción genera un aumento en la señal fluorescente proporcional a la cantidad de DNA diana. Esta fluorescencia se puede monitorizar en el equipo BD MAXTM.

VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System contiene en cada tubo todos los componentes necesarios para llevar a cabo la PCR a tiempo real (cebadores/sondas específicos, dNTPs, tampón, polimerasa y retrotranscriptasa) en formato estabilizado¹, así como un **control interno endógeno (CIE)** (el gen *RNAse P* humano) para controlar la integridad de la muestra, el proceso de extracción y/o descartar la inhibición de la actividad polimerasa. Los genes humanos *housekeeping* están

¹ Tenga en cuenta que los términos "estabilizado" y "liofilizado" se utilizan de manera indistinguible y como sinónimos en todo el documento.

involucrados en el mantenimiento celular básico y, por lo tanto, se espera que estén presentes en todas las células humanas nucleadas y mantengan niveles de expresión relativamente constantes.

	Diana	Canal	Gen
	SARS-CoV-2	475/520	Genes N y <i>ORF1ab</i>
	Influenza B	530/565	Gen <i>M1</i>
Respiratory Virus Mix I	Influenza A	585/630	Genes <i>M1</i> y <i>HA</i>
	RSV (A/B)	630/665	Gen N
	Control Interno Endógeno (CIE) 680/715		Gen Human <i>RNase P</i>
	Parainfluenza (tipos 1, 2 y 3)	475/520	Gen <i>HN</i>
	Parainfluenza (tipo 4)	473/320	Gen <i>F</i>
Respiratory Virus	Coronavirus (229E, NL63, HKU1 and OC43)	530/565	Gen N
Mix II	Metapneumovirus	585/630	Gen <i>F</i>
	Adenovirus	630/665	Gen <i>Hexon</i>
	Control Interno Endógeno (CIE)	680/715	Gen <i>RNase P humana</i>

Tabla 1. Diana, canal y genes.

4. Reactivos suministrados

VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System incluye los siguientes materiales y reactivos detallados en la Tabla 2:

Reactivo/Material	Descripción	Rango de concentración	Código de barras	Cantidad	
	Lioprotectores y estabilizadores	±6 g/100 mL*			
Respiratory Virus Mix I	Trifosfato de nucleótido (dNTPs)	±1 mM*		2 sobres de 12	
reaction tube	Primers y sondas 0.2-1 nMol/µL* Sellado 1K		tubos transparentes		
	Enzimas	10-100 U/rxn*			
	Lioprotectores y estabilizadores	±6 g/100 mL*			
Respiratory Virus Mix II	Trifosfato de nucleótido (dNTPs)	±1 mM*	Callanda 114	2 sobres de 12	
reaction tube	Primers y sondas	0.2-1 nMol/μL *	Sellado 1M	tubos transparentes	
	Enzimas	mas 10-100 U/rxn*			
Rehydration Buffer tube	Mezcla de solución salina	±13 mM	Calleda 11	1 sobre de 24 tubos	
	Tampon (TRIS, pH)		Sellado 11	transparentes	

Tabla 2. Reactivos y materiales proporcionados en VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System con Cat. №. 444221.

5. Reactivos y equipos a suministrar por el usuario

La siguiente lista incluye los materiales que se requieren para el uso pero que no se incluyen en VIASURE Respiratory Virus Extended Mix Real Time PCR Detection Kit for BD MAXTM System.

^{*} Para el componente en formato estabilizado, el rango de concentración se refiere a después de la rehidratación.

- Equipo de PCR a tiempo real: BD MAX™ System (Ref: 441916).
- BD MAX™ ExK™ TNA-3 (Ref: 442827 o 442828).
- BD MAX™ PCR Cartridges (Ref: 437519).
- Vórtex.
- Micropipetas (entre 2 y 1000 μL).
- Agua libre de nucleasas.
- Puntas con filtro.
- Guantes desechables sin polvo.

Opcional:

• Materiales de control externo pueden utilizarse como parte del procedimiento de control de calidad del rendimiento del ensayo. Como control positivo externo (CPE) o control negativo externo (CNE) se puede utilizar material de control disponible en el mercado y/o muestras previamente caracterizadas como positivas o negativas, respectivamente. La selección y validación de los controles CPE y CNE debe realizarse de acuerdo con la normativa local, estatal y/o federal aplicable y los procedimientos estándar de Control de Calidad del laboratorio. Además, cuando se utilice material de control disponible en el mercado, el usuario deberá seguir las instrucciones de uso correspondientes.

VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System ha sido validado utilizando ExK™ TNA-3 (Ref: 442827 o 442828) en el equipo de PCR a tiempo real BD MAX™ System.

Las muestras seleccionadas para la evaluación del dispositivo fueron muestras nasofaríngeas (NF) recogidas utilizando un hisopo estéril flexible de nailon (en lo sucesivo, hisopo nasofaríngeo). A continuación, el hisopo se introduce en el tubo de BD™ Universal Viral Transport System (UVT, SKU: 220220) o Universal Transport Media® (UTM®) (Copan).

6. Condiciones de transporte, almacenamiento y uso

- El transporte y almacenaje de los kits puede realizarse de 2-30°C hasta la fecha de caducidad indicada en la etiqueta del kit.
- Evitar vibraciones durante el transporte para evitar la fuga de líquidos.
- El kit puede usarse hasta 28 días a 2-30°C después de abrir las bolsas de aluminio que contienen los tubos de reacción. Mantener el vial alejado de la luz.

La siguiente tabla resume las condiciones de transporte, almacenamiento y uso tanto para el kit completo como para cada componente:

Componente	Condiciones de transporte	Condiciones de almacenamiento	Condiciones "en-uso"
Kit completo VIASURE **Respiratory Virus Extended Mix** Real Time PCR Detection Kit for BD MAX™ System.		Antes del uso: 2-30°C durante la vida útil indicada en la etiqueta del kit.	* Ver condiciones "en uso" de cada componente.
Respiratory Virus Mix I reaction tube (sellado 1K)	2-30°C durante la vida útil indicada en la etiqueta del	Antes del uso: 2-30°C durante la vida útil indicada en la etiqueta del kit. En un sobre abierto con el gel de sílice: 2-30°C hasta 28 días.	Temperatura ambiente.
Respiratory Virus Mix II reaction tube (sellado 1M)	kit.	Antes del uso: 2-30°C durante la vida útil indicada en la etiqueta del kit. En un sobre abierto con el gel de sílice: 2-30°C hasta 28 días.	Temperatura ambiente.
Rehydration buffer tube		Antes del uso: 2-30°C durante la vida útil indicada en la etiqueta del kit. En un sobre abierto con el gel de sílice: 2-30°C hasta 28 días.	Temperatura ambiente.

Tabla 3. Resumen de las condiciones de transporte, almacenamiento y uso para el producto VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System y cada uno de sus componentes.

7. Precauciones para el usuario

- El producto está destinado a ser utilizado por personal de laboratorio clínico cualificado y entrenado específicamente en las técnicas de PCR en tiempo real y en los procedimientos de diagnóstico *in vitro*.
- Para diagnóstico in vitro.
- Las instrucciones de uso del producto VIASURE y el manual de usuario del sistema BD MAX™ se deben leer cuidadosamente antes de utilizar VIASURE Respiratory Virus Extended Mix Real Time PCR Detection Kit for BD MAX™ System. No llevar a cabo el ensayo PCR hasta haber entendido la información sobre procedimientos, precauciones de seguridad y limitaciones descritas en ellas.
- No se recomienda usar reactivos y/o materiales caducados.
- No utilizar el kit si la etiqueta de control de la caja exterior está rota o dañada.
- No utilizar los reactivos si el estuche exterior está abierto o dañado en el momento que se recibe.
- No utilizar los reactivos si los sobres de aluminio que protegen los tubos están abiertos o dañados en el momento que se reciben.
- No utilizar los reactivos si el material desecante que se incluye en cada sobre de aluminio no está o está dañado.
- No retirar el material desecante de los sobres de aluminio que contienen los reactivos.
- No utilizar los reactivos si el aluminio protector está roto o dañado.
- No mezclar reactivos de diferentes sobres y/o kits y/o lotes.
- Cerrar los sobres de aluminio que protegen los reactivos con el cierre zip inmediatamente después de cada uso para proteger la mezcla de reacción de la luz. Antes de cerrar los sobres eliminar cualquier exceso de aire.
- Proteger los reactivos de la humedad. Una exposición prolongada a la humedad puede afectar al rendimiento del producto.
- Para evitar el deterioro de la etiqueta, no usar el producto cerca de disolventes.

- Un aspecto de la mezcla de reacción en formato estabilizado, que normalmente se encuentra en el fondo del tubo, diferente al habitual (sin forma cónica, no homogénea, de menor/mayor tamaño y/o color diferente al blanquecino) no altera la funcionalidad de la prueba.
- Asegurarse de que el tubo de reacción y el tubo de tampón de rehidratación están bien encajados en su sitio durante la preparación de la gradilla del sistema BD MAX™.
- En el caso de que otros ensayos de PCR se estén llevando a cabo dentro de la misma área del laboratorio, asegurarse que el test VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System, el kit de extracción BD MAX™ ExK™ TNA-3, o cualquier otro reactivo adicional que se necesite para realizar el ensayo y el sistema BD MAX™ no estén contaminados. Evite en todo momento la contaminación microbiológica o con ribonucleasas (RNasa)/ desoxirribonucleasas (DNasa) de los reactivos. Se recomienda el uso de puntas de pipeta estériles, desechables, libres de RNasa/DNasa, y de barrera para aerosoles o de desplazamiento positivo. Use una nueva punta para cada muestra. Es necesario cambiarse los guantes antes de la manipulación de los reactivos y las tarjetas de PCR (BD MAX™ PCR Cartridge).
- Para evitar la contaminación del medio ambiente por amplicones, no rompa las tarjetas de PCR (BD MAX™ PCR Cartridge) después de usarlo. Los sellos de las tarjetas de PCR (BD MAX™ PCR Cartridge) están diseñados para evitar la contaminación.
- Diseñar un flujo de trabajo unidireccional. Se debe comenzar en el área de extracción y después pasar al área de amplificación y de detección. No poner en contacto las muestras, equipos y reactivos utilizados en un área con la zona en la que se realizó el paso anterior.
- Seguir las Buenas Prácticas de Laboratorio. Use ropa protectora, guantes de uso desechables, gafas y mascarilla. No comer, beber, fumar o aplicar productos cosméticos en el área de trabajo. Una vez terminada la prueba, lavarse las manos.
- Las muestras deben ser tratadas como potencialmente infecciosas y/o biopeligrosas, así como los reactivos que han estado en contacto con las muestras, y deben ser gestionadas según la legislación sobre residuos sanitarios nacional. Tome las precauciones necesarias durante la recogida, el transporte, almacenamiento, manipulación y eliminación de muestras.
- Las muestras y los reactivos deben ser manejados en una cabina de seguridad biológica. Utilice equipo de protección personal (PPE) de acuerdo con las directrices actuales para la manipulación de muestras potencialmente infecciosas. Deseche los residuos de acuerdo con las regulaciones locales y estatales.
- Se recomienda la descontaminación periódica de los equipos usados habitualmente, especialmente micropipetas, y de las superficies de trabajo.
- De conformidad con el Reglamento (CE) n° 1907/2006 (REACH), VIASURE Real Time PCR Detection Kits for BD MAX™ System no requieren ficha de datos de seguridad, debido a que se clasifican como no peligrosos para la salud y el medio ambiente por no contener sustancias y/o mezclas que reúnan los criterios de clasificación de peligrosidad dispuestos en el Reglamento (CE) n° 1272/2008 (CLP), o que se encuentren en una concentración superior al valor establecido en dicho reglamento para su declaración.

Se puede solicitar a Certest Biotec S.L. una declaración en la que se afirme el no requerimiento de la ficha de datos de seguridad.

- Asegurarse de que la programación de la prueba PCR en el sistema BD MAX™ se realiza siguiendo las instrucciones de la sección 'Protocolo PCR' (Parámetros de extracción de muestras, códigos de barras personalizados, configuración PCR, etc.).
- Consultar el manual de usuario del sistema BD MAX™ para obtener información sobre advertencias, precauciones y procedimientos adicionales.
- El certificado de análisis no se incluye con este producto, sin embargo, se puede descargar de la web de Certest Biotec S.L. (www.certest.es) en caso de necesidad.

8. Procedimiento del test

Recogida, transporte y almacenamiento de muestras 8.1.

VIASURE Respiratory Virus Extended Mix Real Time PCR Detection Kit for BD MAX™ System ha sido testado en muestras nasofaríngeas recogidas utilizando un hisopo estéril flexible de nailon y colocadas inmediatamente en un tubo estéril con 3 ml de BD™ Universal Viral Transport System (UVT, SKU: 220220)² o Universal Transport Media® (UTM®) (Copan)³. Otros tipos de muestras deben ser validadas por el usuario.

Para la recogida, el almacenaje y el transporte de las muestras deben seguirse las condiciones validadas por el usuario. En general, las muestras clínicas se deben recoger y etiquetar adecuadamente en contenedores limpios con o sin medio de transporte (dependiendo del tipo de muestra). Después de la recolección, las muestras deben colocarse en una bolsa de riesgo biológico y deben transportarse y procesarse lo antes posible para garantizar la calidad de la prueba. Las muestras pueden ser transportadas a Temperatura Ambiente (TA) hasta 2 horas, o 4°C hasta 5 días, siguiendo las normativas locales y nacionales para el transporte de material patógeno. Para transporte a largo plazo (más de 5 días), se recomienda realizar el envío a -20°C o menos4. Las muestras destinadas a pruebas moleculares deben almacenarse en condiciones controladas para que los ácidos nucleicos no se degraden durante el almacenamiento. Se recomienda utilizar muestras frescas para la prueba, pero en caso de que esto no sea posible o en el caso de un estudio retrospectivo, las muestras deben conservarse preferentemente a -70 o -80°C y, como segunda opción, a -20°C⁵. Deben evitarse ciclos de congelación-descongelación para prevenir la degradación de la muestra y los ácidos nucleicos.

² BD universal viral transport system. https://www.bd.com/en-us/products-and-solutions/products/product-families/bd-universal-viral-

³ https://www.copangroup.com/product-ranges/utm/

⁴ IDSA guideline (Miller, J. M., Binnicker, M. J., Campbell, S., ... & Pritt, B. S. (2018). A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clinical Infectious Diseases, 67(6), e1-e94))

⁵ Sánchez-Romero, M. I., García-Lechuz Moya, J. M., González López, J. J. & Orta Mira, N. Collection, transport and general processing of clinical specimens in Microbiology laboratory. Enfermedades Infecc. y Microbiol. Clin. (English ed.) 37, 127-134 (2019).

Las muestras clínicas deben ser recogidas, transportadas y almacenadas de acuerdo con las guías de laboratorio apropiadas y/o con los manuales de políticas de laboratorio. Como ejemplo, consulte la guía IDSA (Miller, J. M., Binnicker, M. J., Campbell, S., ... & Pritt, B. S. (2018). A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. *Clinical Infectious Diseases*, 67(6), e1-e94) o Sánchez-Romero, M. I., García-Lechuz Moya, J. M., González López, J. J., & Orta Mira, N. (2019). Recogida, transporte y procesamiento general de las muestras en el laboratorio de Microbiología. Enfermedades Infecciosas y Microbiología Clínica, 37(2), 127–134. https://doi.org/10.1016/j.eimc.2017.12.002.

Nota: las condiciones de recogida, transporte y almacenamiento de muestras indicadas anteriormente se sugieren en base a las recomendaciones para muestras nasofaríngeas destinadas a ser utilizadas para la detección de ácidos nucleicos, tal como aparecen en la guía autorizada IDSA y el informe de recomendaciones de la SEIMC para la recogida y transporte en microbiología clínica anteriormente referenciados. Sin embargo, recomendamos seguir las pautas del laboratorio y/o el manual de políticas del laboratorio de microbiología para el transporte y la conservación adecuados de las muestras.

Se llevó a cabo un estudio interno para evaluar la estabilidad de las muestras con VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System, empleando matriz nasofaríngea recogidas en medio de transporte BDTM Universal Viral Transport System, positiva para las dianas del producto, cada cepa a una concentración de 2-3xLoD. La estabilidad se analizó mediante tres ensayos diferentes: estabilidad primaria (25°C: 24 y 48 horas; 4°C: 1, 2 y 7 días; -20°C: 2, 3 y 6 meses), estabilidad en el tubo de tampón de muestra (3 y 7 días a 25° y 4°C) y estabilidad anidada (las muestras se incubaron a 4°C y 25°C durante 48 horas, y después, estas muestras se añadieron al tubo de tampón de muestra y se analizaron después de 3 y 7 días a 4°C y 25°C). Además, las muestras se analizaron tras pasar por cinco ciclos de congelación (a -20°C) y descongelación (a 25°C) durante una semana. Los resultados demostraron un buen rendimiento de las muestras almacenadas en todas las condiciones probadas.

8.2. Preparación de la muestra y extracción de NA

Realizar la preparación de la muestra según las recomendaciones del fabricante, detalladas en el instructivo del kit de extracción BD MAXTM ExKTM TNA-3.

1. Pipetear 400 μL de muestra en un tubo de tampón de muestras del sistema BD MAXTM (BD MAXTM ExKTM TNA-3 Sample Buffer Tube) y cerrar el tubo con el tapón perforable. Asegurar que se mezcla completamente agitando la muestra en vórtex a alta velocidad durante 1 minuto. Asegurar que se agita en vórtex unos minutos antes de iniciar el ensayo. Proceder con BD MAXTM System Operation.

Nota: La aplicación de procedimientos de extracción específicos debe ser desarrollada y validada por el usuario y otro tipo de muestras pueden requerir una etapa de tratamiento previo.

8.3. Protocolo PCR

Nota: Por favor, consultar el manual de usuario del sistema BD MAX™ para obtener instrucciones más detalladas.

8.3.1. Programación del test VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System

Nota: Si ya ha creado el test para VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System, puede omitir el paso 8.3.1 e ir directamente al 8.3.2.

- 1) En la pantalla "Run" (Correr) del Sistema BD MAX™, seleccionar la pestaña "Test Editor" (Editor del test).
- 2) Hacer click en el botón "Create" (Crear).

En la pestaña "Basic information" (Información básica):

- 3) En el campo "Test Name" (Nombre del test), escribir el nombre del test: ej. VIASURE Resp Virus.

 Note: El nombre del test debe ser único y tener un máximo de veinte caracteres.
- 4) En el menú desplegable "Extraction Type" (Tipo de extracción), seleccionar "ExK TNA-3".
- 5) En el menú desplegable "Master Mix Format" (Formato master mix), elegir "Dual Master Mix Concentrated Lyophilized MM with Rehydration Buffer (Type 5)" (MM liofilizada concentrada Master Mix dual con tampón de rehidratación Tipo 5). Cuando se selecciona Master Mix dual, cambia la configuración en la derecha de la pestaña "Test editor" (Editor del test). Hay pestañas adicionales para "PCR settings" (Configuración PCR), "Melt settings" (Configuración Melt) y "Test Steps" (Etapas del test) considerando ambos tubos snap-in.
- 6) En el campo "Sample extraction parameters" (Parámetros de extracción de muestra) seleccionar "User defined" (Definido por usuario) y ajustar los siguientes valores de los parámetros (tabla 4).

Sample Extraction Parameters (Parámetros de extracción de muestra)	<i>Value (units)</i> [Valor (unidades)]
<i>Lysis Heat Time</i> (Tiempo de lisis por calor)	10 min
Lysis Temperature (Temperatura de lisis)	60 °C
Sample Tip Height (Altura de la punta de la muestra)	1600 steps
Sample Volume (Volumen de muestra)	950 μL
Wash Volume (Volumen de lavado)	500 μL
<i>Neutralization Volume</i> (Volumen de neutralización)	N/A

DNase Heat Time	N/A
(Temperatura de calentamiento de DNasa)	IN/A

Tabla 4. Parámetros de la extracción de muestras realizada con BD MAX™ ExK™ TNA-3.

- 7) En el campo "Ct Calculation" (Cálculo Ct) seleccionar "Call Ct at Threshold Crossing" (Análisis de Ct con cruce del umbral) (seleccionado por defecto).
- 8) Si se está ejecutando la versión de software 5.00 o superior y se tienen tubos con sellado con código de barras, en el campo "Custom Barcodes" (Códigos de barras personalizados) seleccionar la siguiente configuración:
 - a. "Snap-In 2 Barcode": 1K (en relación a Respiratory Virus Mix I reaction tube)
 - b. "Snap-In 3 Barcode": 11 (en relación a Rehydration Buffer tube).
 - c. "Snap-In 4 Barcode": 1M (en relación a *Respiratory Virus Mix I* reaction tube)

En las <u>pestañas "PCR Settings" (Configuración PCR):</u>

9) En el campo "PCR Settings" (Configuración PCR) introducir los siguientes parámetros descritos en las tablas 5 y 6 para la posición 2 (snap-in 2) (código de color verde en el rack) y la posición 4 (snap-in 4) (código de color azul en el rack), respectivamente: "Alias" (hasta siete caracteres alfanuméricos), "PCR Gain" (Ganancia) y "Threshold" (Umbral), "Ct Min" (Ct mínimo) y "Ct Max" (Ct máximo).

<i>Channel</i> (Canal)	<i>Alias</i> (Alias)	<i>Gain</i> (Ganancia)	<i>Threshold</i> (Umbral)	<i>Ct Min</i> (Ct Min)	<i>Ct Max</i> (Ct Max)
475/520 (FAM)	SARS	80	150	0	40
530/565 (HEX)	FLUB	40	150	0	40
585/630 (ROX)	FLUA	80	150	0	40
630/665 (Cy5)	RSV	80	150	0	40
680/715 (Cy5.5)	EIC	80	150	0	35

Tabla 5. PCR settings (Configuración PCR) para la posición 2.

Channel (Canal)	<i>Alias</i> (Alias)	<i>Gain</i> (Ganancia)	<i>Threshold</i> (Umbral)	<i>Ct Min</i> (Ct Min)	<i>Ct Max</i> (Ct Max)
475/520 (FAM)	HPIV	60	150	0	40
530/565 (HEX)	HCOV	40	150	0	40
585/630 (ROX)	MPV	80	150	0	40
630/665 (Cy5)	HADV	80	150	0	40
680/715 (Cy5.5)	EIC	80	150	0	35

Tabla 6. PCR settings (Configuración PCR) para la posición 4.

Nota: Se recomienda establecer como valor mínimo de partida de *threshold* los indicados anteriormente para cada canal. Sin embargo, el usuario final debe ajustar los valores de *threshold* finales durante la interpretación del resultado para garantizar que el *threshold* se sitúe dentro de la fase exponencial de las curvas de amplificación y por encima de cualquier señal de ruido de fondo. El valor de *threshold* puede variar entre distintos instrumentos debido a las diferentes intensidades de señal.

10) En el campo "Color compensation" (Compensación de color) introducir los siguientes parámetros (Tablas 7 y 8).

		False Receiving Channel (Canal de falsa recepción)				
	<i>Channel</i> (Canal)	475/520	530/565	585/630	630/665	680/715
	475/520	-	4	0	0	0
Excitation	530/565	1	-	0	0	0
<i>Channel</i> (Canal de	585/630	0	0	-	1	0
excitación)	630/665	0	0	3	-	18
	680/715	0	0	0	1.5	-

Tabla 7. Parámetros "Color compensation" (Compensación de color) para la posición 2.

		False Receiving Channel (Canal de falsa recepción)					
	<i>Channel</i> (Canal)	475/520	530/565	585/630	630/665	680/715	
	475/520	-	0	0	0	0	
Excitation	530/565	0	-	0	0	0	
<i>Channel</i> (Canal de	585/630	0	0	-	3	0	
excitación)	630/665	0	0	5	-	19	
	680/715	0	0	0	3	-	

Tabla 8. Parámetros "Color compensation" (Compensación de color) para la posición 4.

En las <u>pestañas "Melt Settings" (Configuración Melt)</u> no es necesaria ninguna acción, no aplica a este producto.

En la pestaña "Test Steps" (Etapas del test):

11) Para definir cada etapa del protocolo de PCR, introducir el nombre de la etapa (hasta veinte caracteres) y configurar los siguientes parámetros: "Profile Type" (Tipo de perfil), "Cycles" (Ciclos), "Time" (Tiempo) and "Temperature" (Temperatura) y seleccionar el campo "Detect" (Detectar) para definir la etapa en la que se realiza la detección (Tabla 9). Hacer clic en el botón "Añadir" para añadir una nueva etapa y repetir el proceso hasta definir todas las etapas necesarias.

Nota: el campo "Type" (Tipo) debe estar vacío.

<i>Step</i> (Etapa)	Step name (Nombre de la etapa)	Profile Type (Tipo de perfil)	Cycles (Ciclos)	Time (s) (Tiempo (s))	Temperature (Temperatura)	<i>Detect</i> (Detección)
Reverse transcription (Retrotranscripción)	RV-transcription	<i>Hold</i> (Choque térmico)	1	900	45°C	1
Initial denaturation (Desnaturalización inicial)	IN-denaturation	<i>Hold</i> (Choque térmico)	1	120	98°C	-
Denaturation and Annealing/Extension (Data collection)	A secondinar/Estavasia	2- Temperatures	45	10	95°C	-
(Desnaturalización y alineamiento/extensión (recogida de datos))	Annealing/Extension	(2- Temperaturas)	45	61.1	63°C	√

Tabla 9. Protocolo PCR para snap-in 2 y snap-in 4.

En la pestaña "Results logic" (Resultado lógico):

12) En el campo "Target" (Diana) introducir el nombre de la diana: ej. SARS (hasta siete caracteres). Repetir los pasos 12-15 para cada diana (ej. SARS, FLUB, FLUA y RSV para snap-in 2 o HPIV, HCOV, MPV y HADV para snap-in 4) siguiendo las tablas específicas para la diana que se va a definir.

Nota: Seleccionar la posición 2 (verde) (snap-in 2 (green)) en el menú desplegable "Master Mix" para establecer el resultado lógico para la primera mezcla de reacción y la posición 4 (azul) (snap-in 4 (blue)) para la segunda. Los nombres de las dianas deben ser diferentes para las posiciones 2 y 4.

13) Hacer clic en la casilla de verificación "Analyze" (Analizar) para incluir las longitudes de onda (canales PCR) deseadas en el análisis de resultados de la diana (Tablas 10-13 para la posición 2 y tablas 14-17 para la posición 4).

Primer master mix (*Respiratory Virus Mix I* reaction tube): Snap-in 2 (green)

<i>Wavelength</i> (Longitud de onda)	<i>Alias</i> (Alias)	<i>Type</i> (Tipo)	<i>Analyze</i> (Analizar)
475/520	SARS	PCR	✓
680/715	EIC	PCR	√

Tabla 10. Selección de los canales de PCR en la pestaña "Result logic" (Resultado lógico) para la diana SARS (SARS-CoV-2).

<i>Wavelength</i> (Longitud de onda)	<i>Alias</i> (Alias)	<i>Type</i> (Tipo)	<i>Analyze</i> (Analizar)
530/565	FLUB	PCR	✓
680/715	EIC	PCR	√

Tabla 11. Selección de los canales de PCR en la pestaña "Result logic" (Resultado lógico) para la díana FLUB (Influenza B).

<i>Wavelength</i> (Longitud de onda)	<i>Alias</i> (Alias)	<i>Type</i> (Tipo)	<i>Analyze</i> (Analizar)
585/630	FLUA	PCR	✓
680/715	EIC	PCR	✓

Tabla 12. Selección de los canales de PCR en la pestaña "Result logic" (Resultado lógico) para la diana FLUA (Influenza A).

<i>Wavelength</i> (Longitud de onda)	<i>Alias</i> (Alias)	<i>Type</i> (Tipo)	<i>Analyze</i> (Analizar)
630/665	RSV	PCR	✓
680/715	EIC	PCR	√

Tabla 13. Selección de los canales de PCR en la pestaña "Result logic" (Resultado lógico) para la diana RSV (Virus Respiratorio Sincitial tipos A y B).

Segundo master mix (Respiratory Virus Mix II reaction tube): Snap-in 4 (blue)

<i>Wavelength</i> (Longitud de onda)	<i>Alias</i> (Alias)	<i>Type</i> (Tipo)	<i>Analyze</i> (Analizar)
475/520	HPIV	PCR	✓
680/715	EIC	PCR	✓

Tabla 14. Selección de los canales de PCR en la pestaña "Result logic" (Resultado lógico) para la diana HPIV (Parainfluenza tipos 1, 2, 3 y 4).

<i>Wavelength</i> (Longitud de onda)	<i>Alias</i> (Alias)	<i>Type</i> (Tipo)	<i>Analyze</i> (Analizar)
530/565	HCOV	PCR	✓
680/715	EIC	PCR	√

Tabla 15. Selección de los canales de PCR en la pestaña "Result logic" (Resultado lógico) para la diana HCOV (Coronavirus 229E, NL63, HKU1 y OC43).

<i>Wavelength</i> (Longitud de onda)	<i>Alias</i> (Alias)	<i>Type</i> (Tipo)	<i>Analyze</i> (Analizar)
585/630	MPV	PCR	✓
680/715	EIC	PCR	✓

Tabla 16. Selección de los canales de PCR en la pestaña "Result logic" (Resultado lógico) para la diana MPV (Metapneumovirus).

<i>Wavelength</i> (Longitud de onda)	<i>Alias</i> (Alias)	<i>Type</i> (Tipo)	<i>Analyze</i> (Analizar)
630/665	HADV	PCR	✓
680/715	EIC	PCR	√

Tabla 17. Selección de los canales de PCR en la pestaña "Result logic" (Resultado lógico) para la diana HADV (Adenovirus).

- 14) Hacer clic en el botón "Edit Logic" (Editar lógica).
- 15) En la ventana "Edit logic" (Editar lógica) aparecen todas las combinaciones de resultados. Para cada fila, en el menú desplegable "Result" (Resultado), seleccionar el resultado llamado cuando se cumplen las condiciones de esa fila, siguiendo las tablas 18-21 para la posición 2 y las tablas 22-25 para la posición 4.

Primera master mix (Respiratory Virus Mix I reaction tube): Snap-in 2 (green)

Result	SARS	CIE
(Resultado)	(475/520)	(680/715)
POS	Valid	Valid
UNR	Valid	Invalid
NEG	Invalid	Valid
UNR	Invalid	Invalid

Tabla 18. Lista de combinaciones de resultados y resultado lógico para la diana SARS (SARS-CoV-2). Los resultados disponibles son POS (Positivo), NEG (negativo) y UNR (no resuelto).

<i>Result</i> (Resultado)	FLUB (530/565)	CIE (680/715)
POS	Valid	Valid
NEG	Valid	Invalid
UNR	Invalid	Valid
UNR	Invalid	Invalid

Tabla 19. Lista de combinaciones de resultados y resultado lógico para la diana FLUB (Influenza B). Los resultados disponibles son POS (Positivo), NEG (negativo) y UNR (no resuelto).

<i>Result</i> (Resultado)	FLUA (585/630)	CIE (680/715)
POS	Valid	Valid
NEG	Valid	Invalid
UNR	Invalid	Valid
UNR	Invalid	Invalid

Tabla 20. Lista de combinaciones de resultados y resultado lógico para la diana FLUA (Influenza A). Los resultados disponibles son POS (Positivo), NEG (negativo) y UNR (no resuelto).

Result	RSV	CIE
(Resultado)	(630/665)	(680/715)
POS	Valid	Valid
NEG	Valid	Invalid
UNR	Invalid	Valid
UNR	Invalid	Invalid

Tabla 21. Lista de combinaciones de resultados y resultado lógico para la diana RSV (Virus Respiratorio Sincitial tipos A y B). Los resultados disponibles son POS (Positivo), NEG (negativo) y UNR (no resuelto).

Nota: Según el Ct Max definido previamente (Tabla 5):

- i. El resultado de los canales SARS (475/520), FLUB (530/565), FLUA (585/630) o
 RSV (630/665) se considera "Valid" (Valido) si el valor de Ct obtenido es ≤40; e
 "Invalid" (Invalido) si el valor de Ct obtenido es >40.
- ii. El resultado del canal CIE (680/715) se considera "Valid" (Valido) si el valor de Ct obtenido es ≤ 35; e "Invalid" (Invalido) si el valor de Ct obtenido es > 35.

Segunda master mix (Respiratory Virus Mix II reaction tube): Snap-in 4 (blue)

<i>Result</i> (Resultado)	HPIV (475/520)	CIE (680/715)
POS	Valid	Valid
UNR	Valid	Invalid
NEG	Invalid	Valid
UNR	Invalid	Invalid

Tabla 22. Lista de combinaciones de resultados y resultado lógico para la diana HPIV (Parainfluenza tipos 1, 2, 3 y 4). Los resultados disponibles son POS (Positivo), NEG (negativo) y UNR (no resuelto).

Result	HCOV CIE	
(Resultado)	(530/565)	(680/715)
POS	Valid	Valid
NEG	Valid	Invalid
UNR	Invalid	Valid
UNR	Invalid	Invalid

Tabla 23. Lista de combinaciones de resultados y resultado lógico para la diana HCOV (Coronavirus 229E, NL63, HKU1 y OC43). Los resultados disponibles son POS (Positivo), NEG (negativo) y UNR (no resuelto).

Result	MPV	EIC
(Resultado)	(585/630)	(680/715)
POS	Valid	Valid
NEG	Valid	Invalid
UNR	Invalid	Valid
UNR	Invalid	Invalid

Tabla 24. Lista de combinaciones de resultados y resultado lógico para la diana MPV (Metapneumovirus). Los resultados disponibles son POS (Positivo), NEG (negativo) y UNR (no resuelto).

Result	HADV (630/66F)	EIC (C00/715)
(Resultado)	(630/665)	(680/715)
POS	Valid	Valid
NEG	Valid	Invalid
UNR	Invalid	Valid
UNR	Invalid	Invalid

Tabla 25. Lista de combinaciones de resultados y resultado lógico para la diana HADV (Adenovirus). Los resultados disponibles son POS (Positivo), NEG (negativo) y UNR (no resuelto).

Nota: Según el Ct Max definido previamente (Tabla 6):


- i. El resultado de los canales HPIV (475/520), HCOV (530/565), MPV (585/630) o
 HADV (630/665) se considera "Valid" (Valido) si el valor de Ct obtenido es ≤40; e
 "Invalid" (Invalido) si el valor de Ct obtenido es >40.
- ii. El resultado del canal CIE (680/715) se considera "Valid" (Valido) si el valor de Ct obtenido es ≤ 35; e "Invalid" (Invalido) si el valor de Ct obtenido es > 35.
- 16) Hacer click en el botón "Save Test" (Guardar test).

8.3.2. Preparación de la gradilla del sistema BD MAX™

- Para cada muestra, coger una tira de reactivos individual del kit de extracción BD MAX™ ExK™ TNA-3 kit. Golpear suavemente cada tira sobre una superficie dura para asegurarse de que todos los líquidos queden en el fondo de los tubos y colocar la tira de reactivos en la gradilla del sistema BD MAX™.
- 2) Determinar y separar el número de tubos de reactivo de extracción necesarios (BD MAX™ ExK™ TNA Extraction Tubes (B4) (sello blanco)) de su bolsa protectora. Colocar (presionar hasta escuchar un click) el tubo de reactivo de extracción (sello blanco) en su posición correspondiente dentro de la tira de reactivos TNA (Posición 1. Código de color blanco en la gradilla. Ver Figura 1). Eliminar el exceso de aire, y cerrar las bolsas protectoras con el zip.
- 3) Calcular y separar el número adecuado de *Respiratory Virus Mix I* reaction tube (sello 1K) y colocarlos (presionar hasta escuchar un click) en su posición correspondiente de la tira (Posición 2. Código de color verde en la gradilla. Ver Figura 1).
 - a. Eliminar el exceso de aire, y cerrar los sobres de aluminio con el zip.
 - b. Para llevar a cabo una rehidratación correcta, asegurarse que el producto liofilizado esté en la parte inferior del tubo y que no esté adherido al área superior del tubo o del sellado del tubo. Golpear suavemente cada tubo sobre una superficie dura para asegurarse de que todo el producto quede en el fondo del tubo.
- 4) Coger el número necesario de Rehydration Buffer tubes (sello 11) y colocarlos en su posición correspondiente dentro de la tira (Posición 3. Sin código de color en la gradilla. Ver Figura 1).
 - a. Eliminar el exceso de aire, y cerrar los sobres con el zip.
 - b. Para llevar a cabo una transferencia correcta, asegúrese de que el líquido esté en la parte inferior del tubo y que no esté adherido a la parte superior del tubo o al sello del mismo. Golpear suavemente cada tubo sobre una superficie dura para asegurarse de que todo el producto quede en el fondo del tubo.

- 5) Calcular y separar el número adecuado de *Respiratory Virus Mix II* reaction tube (sello 1M) y colocarlos en su posición correspondiente de la tira (Posición 4. Código de color azul en la gradilla. Ver Figura 1).
 - a. Eliminar el exceso de aire, y cerrar los sobres de aluminio con el zip.
 - b. Para llevar a cabo una rehidratación correcta, asegurarse que el producto liofilizado esté en la parte inferior del tubo y que no esté adherido al área superior del tubo o del sellado del tubo. Golpear suavemente cada tubo sobre una superficie dura para asegurarse de que todo el producto quede en el fondo del tubo.

Figura 1. Tira de reactivos individuales BD MAX™ TNA Reagent (TNA) del kit de extracción BD MAX™ EXK™ TNA-3 kit.

8.3.3. Configuración del instrumento BD MAX™

- 1) Seleccionar la pestaña "Work List" (Lista de trabajo) en la pantalla "Run" (Correr) utilizando el software v4.50A o uno superior del sistema BD MAX™.
- 2) En el menú desplegable "Test" (Test), seleccionar VIASURE Resp Virus (si todavía no está creado, consultar la sección 8.3.1).
- 3) Seleccionar en el menú desplegable "Kit Lot Number" (Numero de lote del kit) el número de lote del kit de extracción empleado (situado en el estuche exterior). Este paso es opcional.
 - Nota: Los números de lote deben definirse en la pantalla "Inventory" (Inventario) antes de poder seleccionarlos aquí.
- 4) Introducir el número de identificación/el código de barras del "Sample Buffer Tube" (Tubo de tampón de muestra) en el campo de "Sample tube" (Tubo de muestra), ya sea escaneando el código de barras con el lector o mediante entrada manual.

- 5) Introducir "Patient ID" (identificación del paciente) y/o "Accession" (Acceso) y pulsar la tecla "Tab" o "Enter". Continuar hasta que se introduzcan todos los tubos de tampón de muestra. Asegurar que la identificación muestra/paciente y los tubos de tampón de muestra están correctamente colocados.
- 6) Colocar el tampón de muestra preparado en la(s) gradilla(s) del sistema BD MAX™.
- 7) Colocar la(s) gradilla(s) en el sistema BD MAXTM (la gradilla A se encuentra en el lado izquierdo del sistema BD MAXTM y la gradilla B en el lado derecho).
- 8) Colocar el número necesario de BD MAXTM PCR Cartridges en el sistema BD MAXTM.
- 9) Cerrar la puerta del sistema BD MAX™.
- 10) Presionar "Start" (Empezar a correr) para comenzar con el procedimiento.

8.3.4. Informe BD MAX™

- 1) En el menú principal, hacer clic en el botón "Results" (Resultados).
- 2) Hacer doble clic en la prueba incluida en la lista de ensayos o seleccionar la prueba y presionar el botón "view" (Ver).
- 3) Se activarán los botones "Print" (Imprimir) y "Export" (Exportar) en la parte inferior de la pantalla.

Para imprimir los resultados:

- 1. Hacer clic en el botón "Print".
- 2. En la ventana de vista previa de impresión del informe de resultados seleccionar: "Run Details, Test Details and Plot..." (Detalles de ejecución, detalles de prueba y gráfica ...).
- 3. Hacer clic en "Print" para imprimir el informe o en "Export" para exportar el informe en PDF a un USB.

Para exportar los resultados:

- 1. Hacer clic en el botón "Export" para transferir el informe (archivo PDF y CSV) a un USB.
- Una vez finalizada la exportación, aparecerá un icono de correcto/incorrecto en la ventana "Results Export" (Exportación de resultados).

9. Interpretación de resultados

Para una descripción detallada de cómo analizar los datos, consultar el manual de usuario del sistema BD MAX™.

El análisis de los datos se realiza con el software del sistema BD MAXTM de acuerdo con las instrucciones de uso del fabricante. El software del sistema BD MAXTM proporciona los valores de Ct y muestra las curvas de amplificación para cada uno de los canales de detección de cada muestra que se analiza de la siguiente manera:

- Un valor de Ct de 0 indica que el software no ha calculado ningún valor de Ct con el umbral especificado (ver Tabla 5). Si la curva de amplificación muestra un "0" como valor de Ct, es necesario analizarla manualmente.
- Un valor de Ct de -1 indica que no ha habido proceso de amplificación, que el software no ha calculado ningún valor de Ct o que el valor de Ct calculado está por debajo del umbral especificado o por encima del Ct Max (cutoff) establecido.
- Cualquier otro valor de Ct debería de ser interpretado en correlación con la curva de amplificación y según el resultado lógico definido, siguiendo las pautas de interpretación descritas en las Tablas 26 y 27.

Comprobar la emisión de la señal del control interno endógeno para verificar el correcto funcionamiento de la mezcla de amplificación. Además, comprobar que no hay ningún fallo del sistema BD MAX™.

Los resultados deben leerse y analizarse utilizando las siguientes tablas:

Primer master mix (<i>Respiratory Virus Mix I</i> reaction tube): Snap-in 2						
SARS-CoV-2 (nombre de la diana: SARS)	Influenza B (nombre de la diana: FLUB)	Influenza A (nombre de la diana: FLUA)	Virus Respiratorio Sincitial (nombre de la diana: RSV)	Interpretación de muestras individuales de pacientes		
POS	POS	POS	POS	RNA de SARS-CoV-2, Influenza B, Influenza A y RSV detectado		
POS	POS	POS	NEG	RNA de SARS-CoV-2, Influenza B e Influenza A detectado, RNA de RSV no detectado		
POS	POS	NEG	POS	RNA de SARS-CoV-2, Influenza B y RSV detectado, RNA de Influenza A no detectado		
POS	NEG	POS	POS	RNA de SARS-CoV-2, Influenza A y RSV RNA detectado, RNA de Influenza B no detectado		
NEG	POS	POS	POS	RNA de Influenza B, Influenza A y RSV detectado, RNA de SARS-CoV-2 no detectado		
POS	POS	NEG	NEG	RNA de SARS-CoV-2 e Influenza B detectado, RNA de Influenza A y RSV RNA no detectado		
POS	NEG	POS	NEG	RNA de SARS-CoV-2 e Influenza A detectado, RNA de Influenza B y RSV no detectado		
POS	NEG	NEG	POS	RNA de SARS-CoV-2 y RSV detectado, RNA de Influenza B e Influenza A no detectado		
NEG	POS	POS	NEG	RNA de Influenza B e Influenza A detectado, RNA de SARS-CoV-2 y RSV no detectado		
NEG	POS	NEG	POS	RNA de Influenza B y RSV detectado, RNA de SARS-CoV-2 e Influenza A no detectado		
NEG	NEG	POS	POS	RNA de Influenza A y RSV detectado, RNA de SARS-CoV-2 e Influenza B no detectado		
POS	NEG	NEG	NEG	RNA de SARS-CoV-2 detectado, RNA de Influenza B, Influenza A y RSV no detectado		
NEG	POS	NEG	NEG	RNA de Influenza B RNA detectado, RNA de SARS-CoV-2, Influenza A y RSV no detectado		

NEG	NEG	POS	NEG	RNA de Influenza A detectado, RNA de SARS- CoV-2, Influenza B y RSV no detectado
NEG	NEG	NEG	POS	RNA de RSV detectado, RNA de SARS-CoV-2, Influenza B e Influenza A no detectado
NEG	NEG	NEG	NEG	RNA diana no detectado
UNR	UNR	UNR	UNR	Resultado no resuelto (UNR) debido a la presencia de inhibidores en la reacción de PCR o a un problema general (no informado por un código de error) durante el procesamiento de la muestra y/o la etapa de amplificación. ¹
IND	IND	IND	IND	Resultado indeterminado (IND) debido a un fallo en el sistema BD MAX TM . Este resultado se muestra en caso de un fallo del instrumento vinculado a un código de error. ²
INC	INC	INC	INC	Resultado de ensayo incompleto (INC) debido a un fallo en el sistema BD MAX TM . Este resultado se muestra en caso de que no se complete la prueba. ²

Tabla 26. Interpretación de muestras.

- 1 El control Interno Endógeno (CIE) debe mostrar una señal de amplificación con valor de Ct ≤ 35. Si no hay señal de amplificación o el valor de Ct es > 35, el resultado se considera No resuelto (UNR) y es necesario repetir la prueba. Compruebe el informe de resultados y los valores Ct de la diana y tome las medidas oportunas teniendo en cuenta lo siguiente:
 - I. Si el resultado de los genes diana es invalido (Ct > 40, que el software muestra como resultado "-1"), es necesario repetir la prueba desde la muestra primaria preparando de nuevo el tubo Sample Buffer Tube (SBT) si hay suficiente volumen de muestra. Seguir las directrices del laboratorio y/o manuales de política de laboratorio de microbiología.
 - II. Si el resultado de los genes diana es válido (Ct ≤ 40), es posible no ver señal de amplificación del CIE o ver una señal con un valor Ct > 35 (que el software muestra como resultado "-1") cuando se analizan muestras de elevada concentración, debido a una amplificación preferencial de los ácidos nucleicos específicos de la diana. Si se considera necesario, realizar una dilución 1/10 de estas muestras, preparar de nuevo el tubo Sample Buffer Tube (SBT) y repetir la prueba. Seguir las directrices del laboratorio y/o manuales de política de laboratorio de microbiología.
 - NOTA: Las muestras de hisopos nasofaríngeos pueden conservarse sin transferir al SBT durante un máximo de 2 días si se almacenan a 25°C o hasta 7 días si se almacenan a 4°C.
- 2 Pueden obtenerse resultados indeterminados (IND) o incompletos (INC) debido a un fallo del sistema y es necesario volver a realizar la prueba. Consulte el Manual del usuario del sistema BD MAXTM para la interpretación de los códigos de advertencia y error.

Segundo master mix (<i>Respiratory Virus Mix II</i> reaction tube): Snap-in 4					
Parainfluenza (nombre de la diana: HPIV) Coronavirus (nombre de la diana: HCOV) Metapneumovirus (nombre de la diana: HPV) Adenovirus (nombre de la diana: HADV) Interpretación de muestras individuales de pacientes					
POS	POS	POS	POS	RNA/DNA de parainfluenza, coronavirus, metapneumovirus y adenovirus detectado	

				RNA de parainfluenza, coronavirus y
POS	POS	POS	NEG	metapneumovirus detectado, DNA de
103	103	103	NEG	adenovirus no detectado
POS	POS	NEG	POS	RNA/DNA de parainfluenza, coronavirus y
P05	P05	NEG	POS	adenovirus detectado, RNA de
				metapneumovirus no detectado
DOG	NEC	D06	DOG	RNA/DNA de parainfluenza, metapneumovirus
POS	NEG	POS	POS	y adenovirus detectado, RNA de coronavirus
				no detectado
NEO	500	200	200	RNA/DNA de coronavirus, metapneumovirus y
NEG	POS	POS	POS	adenovirus detectado, RNA de parainfluenza
				no detectado
				RNA de parainfluenza y coronavirus
POS	POS	NEG	NEG	detectado, RNA/DNA de metapneumovirus y
				adenovirus no detectado
				RNA de parainfluenza y metapneumovirus
POS	NEG	POS	NEG	detectado, RNA/DNA de coronavirus y
				adenovirus no detectado
				RNA/DNA de parainfluenza y adenovirus
POS	NEG	NEG	POS	detectado, DNA de coronavirus y
				metapneumovirus no detectado
				RNA de coronavirus y metapneumovirus
NEG	POS	POS	NEG	detectado, RNA/DNA de parainfluenza y
				adenovirus no detectado
				RNA/DNA de coronavirus y adenovirus
NEG	POS	NEG	POS	detectado, RNA de parainfluenza y
				metapneumovirus no detectado
				RNA/DNA de metapneumovirus y adenovirus
NEG	NEG	POS	POS	detectado, RNA de parainfluenza y
				coronavirus no detectado
				RNA de parainfluenza detectado, RNA/DNA
POS	NEG	NEG	NEG	de coronavirus, metapneumovirus y
				adenovirus no detectado
				RNA de coronavirus detectado, RNA/DNA de
NEG	POS	NEG	NEG	parainfluenza, metapneumovirus y adenovirus
				no detectado
				RNA de metapneumovirus detectado,
NEG	NEG	POS	NEG	RNA/DNA de parainfluenza, coronavirus y
				adenovirus no detectado
	I .		1	

NEG	NEG	NEG	POS	DNA de adenovirus detectado, RNA de parainfluenza, coronavirus y metapneumovirus no detectado
NEG	NEG	NEG	NEG	RNA diana no detectado
UNR	UNR	UNR	UNR	Resultado no resuelto (UNR) debido a la presencia de inhibidores en la reacción de PCR o a un problema general (no informado por un código de error) durante el procesamiento de la muestra y/o la etapa de amplificación. ¹
IND	IND	IND	IND	Resultado indeterminado (IND) debido a un fallo en el sistema BD MAX TM . Este resultado se muestra en caso de un fallo del instrumento vinculado a un código de error. ²
INC	INC	INC	INC	Resultado de ensayo incompleto (INC) debido a un fallo en el sistema BD MAX TM . Este resultado se muestra en caso de que no se complete la prueba. ²

Tabla 27. Interpretación de muestras.

- 1 El control Interno Endógeno (CIE) debe mostrar una señal de amplificación con valor de Ct ≤ 35. Si no hay señal de amplificación o el valor de Ct es > 35, el resultado se considera No resuelto (UNR) y es necesario repetir la prueba. Compruebe el informe de resultados y los valores Ct de la diana y tome las medidas oportunas teniendo en cuenta lo siguiente:
 - I. Si el resultado de los genes diana es invalido (Ct > 40, que el software muestra como resultado "-1"), es necesario repetir la prueba desde la muestra primaria preparando de nuevo el tubo Sample Buffer Tube (SBT) si hay suficiente volumen de muestra. Seguir las directrices del laboratorio y/o manuales de política de laboratorio de microbiología.
 - II. Si el resultado de los genes diana es válido (Ct ≤ 40), es posible no ver señal de amplificación del CIE o ver una señal con un valor Ct > 35 (que el software muestra como resultado "-1") cuando se analizan muestras de elevada concentración, debido a una amplificación preferencial de los ácidos nucleicos específicos de la diana. Si se considera necesario, realizar una dilución 1/10 de estas muestras, preparar de nuevo el tubo Sample Buffer Tube (SBT) y repetir la prueba. Seguir las directrices del laboratorio y/o manuales de política de laboratorio de microbiología.
 - NOTA: Las muestras de hisopos nasofaríngeos pueden conservarse sin transferir al SBT durante un máximo de 2 días si se almacenan a 25°C o hasta 7 días si se almacenan a 4°C.
- 2 Pueden obtenerse resultados indeterminados (IND) o incompletos (INC) debido a un fallo del sistema y es necesario volver a realizar la prueba. Consulte el Manual del usuario del sistema BD MAXTM para la interpretación de los códigos de advertencia y error.

Nota: Cuando se utilicen controles externos, estos deben mostrar los siguientes resultados esperados; negativo para ENC y positivo para EPC (se espera que las muestras positivas conocidas sean positivas solo para el microorganismo o microorganismos presentes en la muestra). Un ENC con resultado positivo es indicativo de contaminación o fallo en la manipulación de la muestra. Un EPC con resultado negativo es indicativo de un problema de manipulación/preparación de la muestra. Revisar la técnica de preparación/manipulación de la muestra. Cuando se produce un fallo del control externo es necesario repetir la prueba.

En caso de un resultado ambiguo continuo, se recomienda revisar las instrucciones de uso, el proceso de extracción utilizado por el usuario; verificar el correcto rendimiento de cada etapa de la PCR y revisar los parámetros; y verificar la forma sigmoidea de la curva y la intensidad de la fluorescencia.

El resultado de la prueba debe ser evaluado en el contexto del historial médico, los síntomas clínicos y otras pruebas de diagnóstico por un profesional de la salud.

10. Limitaciones del test

- El resultado de la prueba debe ser evaluado en el contexto del historial médico, los síntomas clínicos y otras pruebas de diagnóstico por un profesional de la salud.
- Este ensayo se podría utilizar con diferentes tipos de muestras, aunque sólo ha sido validado con hisopos nasofaríngeos.
- Para obtener un buen rendimiento de la prueba, el producto liofilizado debe encontrarse en la parte inferior del tubo y no adherido a la parte superior del tubo o al sello de aluminio. Golpear suavemente cada tubo sobre una superficie dura para asegurarse de que todo el producto quede en el fondo del tubo.
- El correcto funcionamiento de la prueba depende de la calidad de la muestra; el ácido nucleico deber ser extraído de forma adecuada de las muestras clínicas.
- Esta prueba es un ensayo cualitativo y no proporciona valores cuantitativos ni indica el número de organismos presentes. No es posible correlacionar los valores Ct obtenidos en la PCR con la concentración de la muestra, ya que éstos dependen del termociclador utilizado y de la propia ejecución.
- Se puede detectar un bajo número de copias molde diana por debajo del límite de detección, pero los resultados pueden no ser reproducibles.
- Tenga en cuenta el rango de medición previsto del ensayo, ya que las muestras con concentraciones por encima o por debajo de este rango pueden dar resultados erróneos.
- Existe la posibilidad de falsos positivos debido a la contaminación cruzada con muestras sospechosas de SARS-CoV-2, Influenza A, Influenza B, RSV (tipos A y B), parainfluenza (tipos 1, 2, 3 y 4), coronavirus humano (229E, NL63, HKU1 y OC43), metapneumovirus y adenovirus, ya sea por muestras que contienen altas concentraciones de RNA/DNA molde diana, o por contaminación por arrastre a partir de productos de PCR de reacciones anteriores.
- Las combinaciones de cebadores y sondas específicas para la detección de los genes *Ny ORF1ab* de SARS-CoV-2, del gen *M* (proteína de matriz (M1)) de Influenza A/B, del gen *HA* de Influenza A subtipo H1N1, del gen *N* de RSV (tipos A y B), del gen *HN* de parainfluenza (tipos 1, 2 y 3), del gen *F* de parainfluenza (tipo 4), del gen *N* de coronavirus (229E, NL63, HKU1 y OC43), del gen *F* de metapneumovirus y del gen *hexon* de adenovirus, empleada en el test VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System, no mostraron homologías combinadas

significativas con el genoma humano, microflora humana u otros microorganismos respiratorios, que pudieran originar falsos positivos predecibles.

- Varios factores y sus combinaciones pueden dar lugar a Falsos Negativos, incluyendo:
 - Métodos inadecuados de recolección, transporte, almacenamiento y/o manipulación de muestras.
 - o Procedimientos de procesamiento incorrectos (incluyendo la extracción de RNA/DNA).
 - o Degradación del RNA/DNA durante el envío/almacenamiento y/o procesamiento de la muestra.
 - Mutaciones o polimorfismos en regiones de unión de cebadores o sondas que pueden afectar la detección de nuevas o desconocidas cepas de SARS-CoV-2, Influenza A, Influenza B, RSV (tipos A y B), parainfluenza (tipos 1, 2, 3 y 4), coronavirus humano (229E, NL63, HKU1 y OC43), metapneumovirus y adenovirus.
 - o Una carga viral en la muestra por debajo del límite de detección del ensayo.
 - La presencia de inhibidores de RT-qPCR u otros tipos de sustancias interferentes. No se ha evaluado el impacto de las vacunas, de algunas terapias antivirales, antibióticos, quimioterapéuticos, fármacos inmunosupresores o antifúngicos utilizados para prevenir la infección o durante el tratamiento de esta.
 - El efecto de sustancias interferentes solo se ha evaluado para aquellas indicadas en la sección 12.7.1 (estudio de sustancias interferentes) de estas instrucciones de uso. Se observaron interferencias al testar fluticasona (1,26E-06 mg/ml) y nicotina (3,00E-02 mg/ml) tanto en Respiratory Virus Mix I reaction tube como en Respiratory Virus Mix II reaction tube. Por favor, consulte dicha sección para comprobar las sustancias exógenas y endógenas más comunes que inducen una interferencia total o parcial de la reacción RT-qPCR. Otras sustancias no indicadas en este apartado pueden dar lugar a resultados erróneos.
 - o No seguir las instrucciones de uso y el procedimiento de ensayo.
- Un resultado positivo no indica necesariamente la presencia de virus viables y no implica que estos virus sean infecciosos o que sean los agentes causantes de los síntomas clínicos. Sin embargo, un resultado positivo puede ser indicativo de la presencia de las secuencias virales diana.
- Resultados negativos no excluyen la presencia de RNA/DNA de SARS-CoV-2, Influenza A, Influenza B, RSV (tipos A y B), parainfluenza (tipos 1, 2, 3 y 4), coronavirus humano (229E, NL63, HKU1 y OC43), metapneumovirus y adenovirus en una muestra clínica y no deben usarse como la única base para el tratamiento u otras decisiones de manejo del paciente. No se han determinado los tipos de muestras óptimos y el momento en el que se alcanzan los máximos niveles de carga viral durante las infecciones causadas por estos microorganismos. La recogida de múltiples muestras (tipos de muestras y en varios puntos a lo largo del tiempo) del mismo paciente puede ser necesaria para detectar el patógeno.
- Es posible que la detección de algunas cepas circulantes a partir del 2019 pertenecientes al Linaje Victoria de Influenza B se pueda ver comprometida debido a mutaciones puntuales en estas cepas.

- Únicamente se ha testado la inclusividad de Influenza B para las variantes que contienen las mutaciones C54T, C55T y C120T (referencia de la secuencia NC_002210.1).
- Si las pruebas de diagnóstico para otras enfermedades respiratorias son negativas y la presentación clínica del paciente y la información epidemiológica sugieren una posible infección por SARS-CoV-2, Influenza A, Influenza B, RSV (tipos A y B), parainfluenza (tipos 1, 2, 3 y 4), coronavirus humano (229E, NL63, HKU1 y OC43), metapneumovirus y adenovirus, entonces se debe considerar el resultado como un falso negativo y se debe discutir realizar nuevas pruebas al paciente.
- Los valores de fluorescencia pueden variar debido a múltiples factores como: equipo de PCR utilizado (incluso siendo el mismo modelo), sistema de extracción, tipo de muestra, tratamiento previo de la muestra etc.... entre otros.
- El producto incluye primers y sondas específicas para la detección de la cepa Influenza A H1N1pdm09. No se puede excluir la cepa de influenza pandémica y debe ser considerada una prueba adicional en caso de resultado positivo a Influenza.
- Los valores predictivos positivo y negativo dependen en gran medida de la prevalencia en todas las pruebas de diagnóstico in vitro. El rendimiento de VIASURE Respiratory Virus Extended Mix Real Time PCR Detection Kit for BD MAX™ System puede variar en función de la prevalencia y de la población analizada.
- En el caso de obtener con VIASURE Respiratory Virus Extended Mix Real Time PCR Detection Kit for BD MAX™ System resultados no resueltos, indeterminados o incompletos, se requiere volver a testar de nuevo. Los resultados no resueltos pueden deberse a la presencia de inhibidores en la muestra o debido a una rehidratación incorrecta del tubo de mezcla de reacción liofilizada. Si hay un fallo en el instrumento, se podrán obtener resultados indeterminados o incompletos.

11. Control de calidad

VIASURE Respiratory Virus Extended Mix Real Time PCR Detection Kit for BD MAXTM System contiene un Control Interno Endógeno (CIE) en cada tubo de reacción que confirma el correcto funcionamiento de la técnica. Además, la utilización de controles externos (EPC y ENC) permite confirmar el rendimiento del ensayo. El sistema BD MAXTM no utiliza los controles externos para la interpretación de resultados sino que los considera como una muestra. El Control Positivo Externo (EPC) está destinado a controlar un posible fallo de los reactivos del ensayo, mientras que el Control Negativo Externo (ENC) está destinado a detectar la contaminación ambiental o de los reactivos por los ácidos nucleicos diana.

12. Características analíticas del funcionamiento del test

12.1. Linealidad analítica

La linealidad del ensayo se determinó y confirmó analizando diluciones seriadas 1:10 de muestras de hisopos nasofaríngeos con una concentración conocida de RNA/DNA específico y sintético perteneciente a SARS-CoV-2, Influenza A, Influenza B, RSV (tipos A y B), parainfluenza, coronavirus humano, metapneumovirus y adenovirus (en el rango de 2E+07 a 2E+00 copias por µl). A continuación, se incluye un ejemplo de las gráficas de amplificación resultantes:

Figura 2. Diluciones seriadas de SARS-CoV-2 (2E+07 to 2E+00 copies/µl). Experimento realizado en el equipo BD MAX™ System (canal 475/520 (FAM)).

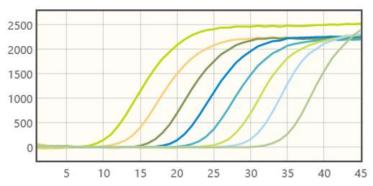


Figura 3. Diluciones seriadas de Influenza B (2E+07 to 2E+00 copies/µl). Experimento realizado en el equipo BD MAX™ System (canal 530/565 (HEX)).

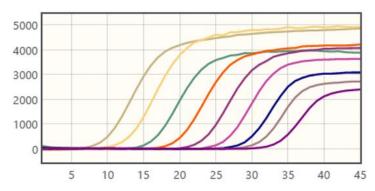


Figura 4. Diluciones seriadas de Influenza A (2E+07 to 2E+00 copies/µl). Experimento realizado en el equipo BD MAX™ System (canal 585/630 (ROX)).

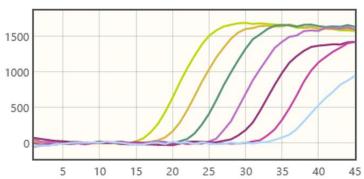


Figura 5. Diluciones seriadas de RSV (2E+07 to 2E+00 copies/µl). Experimento realizado en el equipo BD MAX™ System (canal 630/665 (Cy5)).

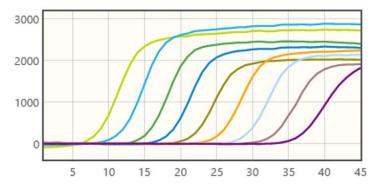


Figura 6. Diluciones seriadas de parainfluenza (2E+07 to 2E+00 copies/µl). Experimento realizado en el equipo BD MAX™ System (canal 475/520 (FAM)).

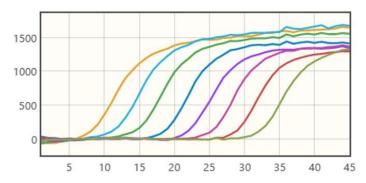


Figura 7. Diluciones seriadas de coronavirus (2E+07 to 2E+00 copies/µl). Experimento realizado en el equipo BD MAX™ System (canal 530/565 (HEX)).

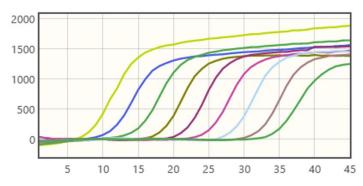
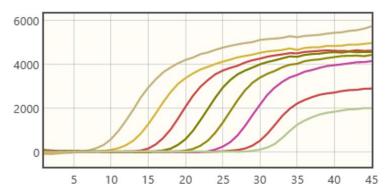



Figura 8. Diluciones seriadas de metapneumovirus (2E+07 to 2E+00 copies/µl). Experimento realizado en el equipo BD MAX™ System (canal 585/630 (ROX)).

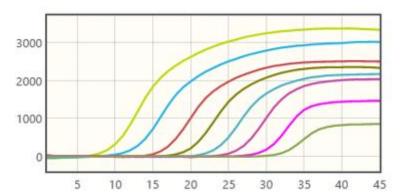


Figura 9. Diluciones seriadas de adenovirus (2E+07 to 2E+00 copies/µl). Experimento realizado en el equipo BD MAX™ System (canal 630/665 (Cy5)).

12.2. Sensibilidad analítica. Límite de Detección (LoD)

La sensibilidad analítica o límite de detección (LoD) de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System ha sido analizada con tres lotes utilizando muestras nasofaríngeas negativas recogidas en BD™ Universal Viral Transport System contaminadas con las cepas de referencia o RNA sintético detallado en la siguiente tabla.

Virus	Cepa / RNA sintético	Referencia externa
SARS-CoV-2	Heat-inactivated SARS-CoV-2 cepa 2019-n- CoV/USA-WA1/2020	VR-1986HK
Influenza A	Influenza A virus (H1N1) cepa A/PR/8/34	VR-95PQ
Influenza B	Influenza B virus (Linaje Yamagata) cepa B/Florida/4/2006	VR-1804PQ
RSV A	Virus respiratorio sincitial humano A cepa Long	VR-26PQ
RSV B	Virus respiratorio sincitial humano B cepa 9320	FR-293
Parainfluenza virus tipo 1	Virus parainfluenza humano 1 cepa C35	VR-94
Parainfluenza virus tipo 2	Virus parainfluenza humano 2 cepa Greer	VR-92
Parainfluenza virus tipo 3	Virus parainfluenza humano 3 cepa C 243	VR-93
Parainfluenza virus tipo 4	Virus parainfluenza humano 4b cepa CH 19503	VR-1377
Coronavirus OC43	Betacoronavirus 1	VR-1558
Coronavirus 229E	Coronavirus humano 229E	VR-740
Coronavirus NL63	Coronavirus humano, cepa NL63	FR-304
Coronavirus HKU1	RNA sintético cuantitativo de coronavirus humano HKU1	
Metapneumovirus	Metapneumovirus Cultivo líquido de Metapneumovirus humano 8 (hMPV-8) Tipo B2 (Inactivado por calor)	
Adenovirus	Adenovirus humano 1 cepa Adenoide 71	VR-1

Tabla 28. Cepas de referencia y RNA sintético utilizado para los ensayos de rendimiento de VIASURE Respiratory Virus Extended Mix Real Time PCR Detection kit for BD MAX™ System (ensayo LoD).

Además, en el caso de la diana SARS-CoV-2, el LoD (UI/µL) se analizó utilizando 1st WHO International Standard SARS-CoV-2 RNA (NIBSC code 20/146). Los resultados de LoD obtenidos con VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System se detallan en la siguiente tabla:

Hisopos nasofaríngeos							
Respiratory Virus Mix I reaction tube							
SARS	SARS FLUA FLUB RSV						
4.5E+00 UI/μL	6.7E-01 cop	oias/µL	7.29E+00 copias/µL	1.35E+00 cop	oias/µL RSV A		
				2.52E+01 TCI	D50/ml RSV B		
		Re	spiratory virus Mix II reactio	n tube			
HPI	V		HCOV	MPV	HADV		
5.33E+00 TCID50/ml HPIV 1 4.80		4.80E-0	2 TCID50/ml HCOV OC43	5.10E-02 TCID50/ml	6.00E+00 TCID50/ml		
4.80E+00 TCID50/ml HPIV 2 1.60E-01 TCID50/ml HCOV 229E							
9.00E+02 TCID50/ml HPIV 3 4.80E-03 TCID50/ml HCOV NL63							
1.44E+01 TCID5	50/ml HPIV 4	6.00E+0	00 copias/µL HCOV HKU1				

Tabla 29. Límite de detección VIASURE Respiratory Virus Extended Mix Real Time PCR Detection kit for BD MAX™ System. UI = Unidades Internacionales, TCID50 = Median Tissue Culture Infection Dose (Dosis infecciosa media de un cultivo de tejido).

12.3. Rango de medición

El rango de medición del ensayo se determinó probando una serie de diluciones 1:10 que contenían una concentración conocida de RNA/DNA sintético y específico perteneciente a SARS-CoV-2, Influenza A, Influenza B, RSV (tipos A y B), parainfluenza (tipos 1, 2, 3 y 4), coronavirus humano (229E, NL63, HKU1 y OC43), metapneumovirus y adenovirus. Los resultados permitieron confirmar la correcta detección de las dianas en el rango de medición de 2E+07 a 2E+00 copias/µL, excepto para HCoV-HKU1 cuyo rango de medida va de 2E+06 a 2E+00 copias/µl.

En conclusión, el rango de medida de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System fue determinado satisfactoriamente, asegurando la fiabilidad, exactitud y reproducibilidad de los resultados en un amplio espectro de cargas virales, y afirmando su utilidad en varios escenarios de diagnóstico clínico.

12.4. Exactitud

12.4.1. Veracidad (Sesgo)

La veracidad de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System fue evaluada frente al material de referencia listado a continuación añadido en muestras nasofaríngeas negativas recogidas en BD™ Universal Viral Transport System.

1. Fragmentos de DNA sintéticos

- Fragmento de DNA sintético para el gen *ORF1* de SARS-CoV-2: NCOXPC, canal FAM.
- Fragmento de DNA sintético para el gen N de SARS-CoV-2: NCOXPC, canal FAM.
- Fragmento de DNA sintético para el gen *M1* de Flu A: YIAXPC, canal ROX.
- Fragmento de DNA sintético para el gen *HA* de Flu A: HNVXPC, canal ROX.
- Fragmento de DNA sintético para el gen *M1* de Flu B: YIBXPC, canal HEX.
- Fragmento de DNA sintético para el gen N de RSV A: RSAXPC, canal Cy5.
- Fragmento de DNA sintético para el gen N de RSV B: RSBXPC, canal Cy5.
- Fragmento de DNA sintético para el gen HN de parainfluenza 1: PIXPC, canal FAM.
- Fragmento de DNA sintético para el gen HN de parainfluenza 2: PIXPC, canal FAM.
- Fragmento de DNA sintético para el gen HN de parainfluenza 3: PIXPC, canal FAM.
- Fragmento de DNA sintético para el gen F de parainfluenza 4: PIXPC, canal FAM.
- Fragmento de DNA sintético para el gen N de coronavirus OC43: CORXPC, canal HEX.
- Fragmento de DNA sintético para el gen N de coronavirus-229E: CORXPC, canal HEX.
- Fragmento de DNA sintético para el gen N de coronavirus-NL63: CORXPC, canal HEX.
- Fragmento de DNA sintético para el gen N de coronavirus HKU1: CORXPC, canal HEX.
- Fragmento de DNA sintético para el gen F de metapneumovirus: MPVXPC, canal ROX.
- Fragmento de DNA sintético para el gen *hexon* de adenovirus: ADVXPC, canal Cy5.

Todos los fragmentos de DNA sintéticos se detectaron correctamente en el canal adecuado.

2. Colección Americana de Cultivos Tipo ("ATCC®")

Referencia externa	Microorganismo	Nombre del producto	Variedad	Resultado
VR-1986HK	SARS-CoV-2	Heat-inactivated SARS- CoV-2	2019-nCoV/USA- WA1/2020	Detectado
VR-3276SD	SARS-CoV-2	Quantitative Synthetic SARS-CoV-2 RNA: ORF, E, N	N/A	Detectado
VR-1986D	SARS-CoV-2	Genomic RNA from 2019 Novel Coronavirus	SARS-Related Coronavirus 2, aislado USA-WA1/2020	Detectado
VR-95PQ	Flu A	Influenza A virus (H1N1), Purified	A/PR/8/34	Detectado
VR-1804PQ	Flu B	Influenza B virus (Yamagata Lineage), Purified	B/Florida/4/2006	Detectado
VR-26PQ	RSV-A	Human respiratory syncytial virus, High titer	Long	Detectado
VR-94	Virus Parainfluenza 1	Human parainfluenza virus 1 (HPIV-1)	C35	Detectado
VR-92	Virus Parainfluenza 2	Human parainfluenza virus 2 (HPIV-2)	Greer	Detectado
VR-93	Virus Parainfluenza 3	Human parainfluenza virus 3 (HPIV-3)	C 243	Detectado
VR-1377	Virus Parainfluenza 4	Human parainfluenza virus 4 (HPIV-4b)	CH 19503	Detectado

VR-1558	Coronavirus OC43	Betacoronavirus 1	OC43	Detectado
VR-740	Coronavirus 229E	Human coronavirus 229E	229E	Detectado
VR-3262SD	Coronavirus HKU1	Quantitative Synthetic Human Coronavirus Strain HKU1 RNA	HKU1	Detectado
VR-3263SD	Coronavirus NL63	Quantitative Synthetic Human coronavirus Strain NL63 RNA	NL63	Detectado
VR-3250SD	Metapneumovirus	Synthetic Human metapneumovirus RNA	N/A	Detectado
VR-1	Adenovirus	Human adenovirus 1	Adenoid 71	Detectado
VR-6	Adenovirus	Human Adenovirus 6	Tipo 6 (Especie C) cepa Tonsil 99	Detectado
VR-16	Adenovirus	Human Adenovirus 15	Tipo 15 (Especie D) cepa 305 [955, CH. 38]	Detectado
VR-3343	Adenovirus	Human adenovirus 31	Tipo 31 (Especie A) cepa 1315/63	Detectado

Tabla 30. Material de referencia de la Colección Americana de Cultivos Tipo (ATCC®).

Todas las cepas de la ATCC se detectaron correctamente en el canal adecuado y el CIE mostró amplificación con un valor Ct ≤35.

3. The International Reagent Resource (IRR™)

Referencia externa	Microorganismo	Nombre del producto	Variedad	Resultado
FR-293	RSV-B	Human Respiratory Syncytial Virus B	9320	Detectado
FR-304	Coronavirus NL63	Human Coronavirus, Strain NL63	NL63	Detectado
FR-1	Flu A	Influenza A virus	A/Brisbane/59/2007 (H1N1)	Detectado
FR-3	Flu A	Influenza A virus	A/South Dakota/6/2007 (H1N1)	Detectado
FR-5	Flu A	Influenza A virus	A/Hawaii/31/2007 (H1N1)	Detectado
FR-6	Flu A	Influenza A virus	A/Qatar/1123/2007 (H1N1)	Detectado
FR-7	Flu A	Influenza A virus	A/Cambodia/0371/2007 (H1N1)	Detectado
FR-8	Flu A	Influenza A virus	A/Brisbane/10/2007 (H3N2)	Detectado
FR-12	Flu A	Influenza A virus	A/Taiwan/760/2007 (H3N2)	Detectado
FR-13	Flu A	Influenza A virus	A/Texas/71/2007 (H3N2)	Detectado
FR-27	Flu A	Influenza A virus	A/Brisbane/10/2007 IVR- 147 (H3N2)	Detectado
FR-28	Flu A	Influenza A virus	A/Brisbane/59/2007 IVR- 148 (H1N1)	Detectado
FR-29	Flu A	Influenza A virus	A/South Dakota/6/2007 X-173 (H1N1)	Detectado
FR-201	Flu A	Influenza A virus	A/California/07/2009 (H1N1)pdm09	Detectado

FR-202	Flu A	Influenza A virus	A/California/08/2009 (H1N1)pdm09	Detectado
FR-203	Flu A	Influenza A virus	A/New York/18/2009 (H1N1)pdm09	Detectado
FR-245	Flu A	Influenza A virus	A/Mexico/4108/2009 (H1N1)pdm09	Detectado
FR-246	Flu A	Influenza A virus	A/California/07/2009 NYMC X-179A (H1N1)pdm09	Detectado
FR-16	Flu B	Influenza B virus	B/Pennsylvania/7/2007 (Linaje Yamagata)	Detectado
FR-17	Flu B	Influenza B virus	B/Santiago/4364/2007 (Linaje Yamagata)	Detectado
FR-18	Flu B	Influenza B virus	B/Brisbane/3/2007 (Linaje Yamagata)	Detectado
FR-19	Flu B	Influenza B virus	B/Pennsylvania/5/2007 (Linaje Victoria)	Detectado
FR-20	Flu B	Influenza B virus	B/Victoria/304/2006 (Linaje Victoria)	Detectado
FR-183	Flu B	Influenza B virus	B/Bangladesh/3333/2007 (Linaje Yamagata)	Detectado
FR-294	RSV A	Human Respiratory Syncytial Virus	A-2	Detectado

Tabla 31. Material de referencia de International Reagent Resource (IRR™).

Todas las cepas de IRR se detectaron correctamente en el canal adecuado y el CIE mostró amplificación con un valor Ct ≤35.

4. National Institute for Biological Standards and Control (NIBSC)

Referencia externa	Microorganismo	Nombre del producto	Variedad	Resultado
20/146	SARS-CoV-2	First WHO International Standard for SARS-CoV-2 RNA	Aislado England/02/2020	Detectado
20/110	SARS-CoV-2	2019 novel coronavirus (SARS-CoV-2) Working Reagent for NAT	N/A	Detectado
19/304	SARS-CoV-2	Research Reagent for SARS- CoV-2 RNA	N/A	Detectado
08/176	Virus Parainfluenza 1	Parainfluenza Virus Serotype 1	N/A	Detectado
08/178	Virus Parainfluenza 2	Parainfluenza Virus Serotype 2	N/A	Detectado
08/180	Virus Parainfluenza 4	Parainfluenza Virus Serotype 1	N/A	Detectado
08/320	Metapneumovirus	Human Metapneumovirus Working Reagent for NAT	N/A	Detectado
16/324	Adenovirus	First WHO International Standard for Human Adenovirus DNA	Tipo 2	Detectado

Tabla 32. Material de referencia de National Institute for Biological Standards and Control (NIBSC).

Todas las cepas de NIBSC se detectaron correctamente en el canal adecuado y el CIE mostró amplificación con un valor Ct ≤35.

5. BEI resources

Referencia externa	Microorganismo	Nombre del producto	Variedad	Resultado
NR-52287	SARS-CoV-2	SARS-Related Coronavirus 2	Aislado USA- WA1/2020, Gamma- Irradiated	Detectado
NR-28530	RSV	Human Respiratory Syncytial Virus, A2000/3-4	A2000/3-4	Detectado
NR-22227	Metapneumovirus	Human metapneumovirus	TN/83-1211	Detectado

Tabla 33. Material de referencia de BEI resources.

Todas las cepas de BEI resources se detectaron correctamente en el canal adecuado y el CIE mostró amplificación con un valor Ct ≤35.

6. Material de control

Referencia externa	Microorganismo	Nombre del producto	Variedad	Resultado
Fluarix Tetra 2022/2023	Flu A/Flu B	Influenza vaccine Fluarix Tetra 2022/2023	Flu A/Victoria/2570/2019 Flu A/Darwin/6/2021 Flu B/Austria/1359417/2021 Flu B/Phuket/3073/2013	Detectado
Fluarix Tetra 2023/2024	Flu A/Flu B	Influenza vaccine Fluarix Tetra 2023/2024	Flu A/Victoria/4897/2022 Flu A/Darwin/6/2021 Flu B/Austria/1359417/2021 Flu B/Phuket/3073/2013	Detectado
102019	SARS-CoV-2	Synthetic SARS-CoV-2 RNA Control 1	SARS-CoV-2 aislado Australia/VIC01/2020	Detectado
102024	SARS-CoV-2	Synthetic SARS-CoV-2 RNA Control 2	SARS-CoV-2 aislado Wuhan-Hu-1	Detectado
103907	SARS-CoV-2	Synthetic SARS-CoV-2 RNA Control 14	Variante UK (B.1.1.7_710528)	Detectado
103909	SARS-CoV-2	Synthetic SARS-CoV-2 RNA Control 15	Variante UK (B.1.1.7_601443)	Detectado
104043	SARS-CoV-2	Synthetic SARS-CoV-2 RNA Control 16	Variante sudafricana	Detectado
104044	SARS-CoV-2	Synthetic SARS-CoV-2 RNA Control 17	Variante Japón/Brasil	Detectado
0505-0129	SARS-CoV-2	Accuplex™ SARS-CoV-2 Verification Panel	N/A	Detectado
MBC139-R	SARS-CoV-2	AMPLIRUN® SARS-CoV-2 B.1.351 RNA CONTROL	Linaje B.1.351	Detectado
MBTC030-R	SARS-CoV-2	AMPLIRUN® TOTAL SARS-CoV-2 CONTROL	Linaje B.1.351	Detectado
MBTC031-R	SARS-CoV-2, Flu A, Flu B y RSV	AMPLIRUN® TOTAL SARS-CoV- 2/FLUA/FLUB/RSV CONTROL	Influenza A H3N2 (A/Perth/16/2009), Influenza B (B/Brisbane/60/2008), RSV (9320)	Detectado
MBC144-R	MPV	AMPLIRUN® METAPNEUMOVIRUS RNA CONTROL	Linaje B1	Detectado

				1
SCV2_24C1B-01	SARS-CoV-2	SARS-CoV-2 Delta variant	Variante delta B.1.617.2	Detectado
SCV2_23C1D-01	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje XBB	Detectado
SCV2_23C1D-02	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BQ1.1	Detectado
SCV2_23C1D-03	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BA.2.75	Detectado
SCV2_23C1D-04	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BA.5	Detectado
SCV2_23C1D-05	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BQ.1	Detectado
SCV2_23C1B-01	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BA.4	Detectado
SCV2_23C1B-03	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BA.5	Detectado
SCV2_23C1B-04	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BA.4	Detectado
SCV2_23C1B-05	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BA.2	Detectado
SCV2_23C1C-01	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BA.2.75	Detectado
SCV2_23C1C-02	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BQ.1	Detectado
SCV2_23C1C-03	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BQ1.1	Detectado
SCV2_23C1C-04	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje XBB	Detectado
SCV2_23C1C-05	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BA.2	Detectado
SCV2_23C1A-01	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BA.5	Detectado
SCV2_23C1A-02	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BA.2	Detectado
SCV2_23C1A-03	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BA.5	Detectado
SCV2_23C1A-05	SARS-CoV-2	SARS-CoV-2 Omicron variant	Sublinaje BA.4	Detectado
ID3-09 2023	RSV	Influenza A virus	A/Cambodia/e0826360/2020 (H3N2)	Detectado
359043	RSV	Human Respiratory Syncytial Virus, B	N/A	Detectado
PINFRNA101S-06	Parainfluenza virus tipo 2	PIV-2	N/A	Detectado
PINFRNA22S-02	Parainfluenza virus tipo 3	PIV-3	N/A	Detectado
CVRNA22S-04	Coronavirus	Coronavirus HKU	HKU	Detectado

0810110CF	Adenovirus	Adenovirus Culture Fluid (Heat Inactivated) Type 2	Tipo 2 (Especie C)	Detectado
0810062CFHI	Adenovirus	Adenovirus Culture Fluid (Heat Inactivated) Type 3	Tipo 3 (Especie B)	Detectado
0810070CFHI	Adenovirus	Adenovirus Culture Fluid (Heat Inactivated) Type 4	Tipo 4 (Especie E)	Detectado
0810020CF	Adenovirus	Adenovirus Culture Fluid (Heat Inactivated) Type 5	Tipo 5 (Especie C)	Detectado
0810021CFHI	Adenovirus	Adenovirus Culture Fluid (Heat Inactivated) Type 7A	Tipo 7A (Especie B)	Detectado
0810119CFHI	Adenovirus	Adenovirus Culture Fluid (Heat Inactivated) Type 37	Tipo 37	Detectado
0810084CFHI	Adenovirus	Adenovirus Type 40 Culture Fluid (Heat Inactivated) Strain Dugan	Tipo 40, cepa Dugan	Detectado
0810085CFHI	Adenovirus	Adenovirus Type 41 Culture Fluid (Heat Inactivated) Strain Tak	Tipo 41 (Especie F), cepa Tak	Detectado
0810159CF	MPV	Human Metapneumovirus 8	Tipo B2	Detectado

Tabla 34. Material de control para SARS-CoV-2, Influenza A, Influenza B, RSV, parainfluenza, coronavirus, metapneumovirus y adenovirus.

Todas las cepas se detectaron correctamente en el canal adecuado y el CIE mostró amplificación con un valor Ct ≤35.

7. Programas de Evaluación Externa de la Calidad (EQAs)

Se analizaron un total de 85 muestras que contenían SARS-Cov-2, influenza A, influenza B, RSV, parainfluenza, coronavirus, metapneumovirus y/o adenovirus, entre otros microorganismos que no eran objetivo, procedentes de los programas QCMD, INSTAND, CAP y RCPA, mostrando una elevada concordancia.

12.4.2. Precisión

Para determinar la precisión de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX[™] System, se realizaron ensayos intra-ensayo (repetibilidad), inter-ensayo, inter-lote e intertermociclador (reproducibilidad) con muestras nasofaríngeas negativas recogidas en BD[™] Universal Viral Transport System contaminadas con el material de referencia mencionado en la tabla 28 de las dianas representativas seleccionadas para cada canal de fluorescencia: SARS-CoV-2, influenza A, Influenza B, RSV B, parainfluenza virus tipos 3, coronavirus OC43, metapneumovirus y adenovirus.

Intra-ensayo

El intra-ensayo se probó analizando seis réplicas de las diferentes muestras en la misma carrera utilizando VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System. Un resumen de los resultados se muestra en las siguientes tablas.

Respiratory Virus Mix / reaction tube					
Diana	Muestra	Canal	Ct (x)	σ	CV %
	2xLoD	475/520 (FAM)	30,30	0,31	1,02
SARS-CoV-2	5xLoD	475/520 (FAM)	29,15	0,45	1,53
	Control negativo	475/520 (FAM)	Neg	N/A	N/A
	2xLoD	530/565 (HEX)	32,98	0,53	1,62
Influenza B	5xLoD	530/565 (HEX)	31,32	0,52	1,68
	Control negativo	530/565 (HEX)	Neg	N/A	N/A
	2xLoD	585/630 (ROX)	33,45	1,35	4,03
Influenza A	5xLoD	585/630 (ROX)	31,37	0,67	2,15
	Control negativo	585/630 (ROX)	Neg	N/A	N/A
	2xLoD	630/665 (CY5)	32,18	1,49	4,64
RSV	5xLoD	630/665 (CY5)	31,02	0,56	1,79
	Control negativo	630/665 (CY5)	Neg	N/A	N/A
EIC	2xLoD	680/715 (CY5.5)	26,17	0,38	1,46
	5xLoD	680/715 (CY5.5)	25,97	0,50	1,93
	Control negativo	680/715 (CY5.5)	26,37	0,91	3,46

Tabla 35. Resultados de intra-ensayo de VIASURE Respiratory Virus Extended Mix Real Time PCR Detection Kit for BD MAXTM System. (Ct) = ciclo umbral. (\bar{X}) = media aritmética del Ct, (σ) = desviación estándar, (CV %) = coeficiente de variación, Neg = negativo, N/A.= no aplica.

Respiratory Virus Mix II reaction tube					
Diana	Muestra	Canal	Ct (x)	σ	CV %
	2xLoD	475/520 (FAM)	32,13	0,56	1,76
Parainfluenza virus	5xLoD	475/520 (FAM)	29,97	1,16	3,88
	Control negativo	475/520 (FAM)	Neg	N/A	N/A
	2xLoD	530/565 (HEX)	34,23	0,73	2,14
Coronavirus	5xLoD	530/565 (HEX)	32,03	0,85	2,65
	Control negativo	530/565 (HEX)	Neg	N/A	N/A
	2xLoD	585/630 (ROX)	31,53	0,66	2,09
Metapneumovirus	5xLoD	585/630 (ROX)	29,63	0,77	2,61
	Control negativo	585/630 (ROX)	Neg	N/A	N/A
Adenovirus	2xLoD	630/665 (CY5)	34,35	0,10	0,31
	5xLoD	630/665 (CY5)	33,55	1,39	4,15
	Control negativo	630/665 (CY5)	Neg	N/A	N/A

	2xLoD	680/715 (CY5.5)	25,72	0,53	2,08
EIC	5xLoD	680/715 (CY5.5)	25,57	0,61	2,39
	Control negativo	680/715 (CY5.5)	25,63	0,23	0,91

Tabla 36. Resultados de intra-ensayo de VIASURE Respiratory Virus Extended Mix Real Time PCR Detection Kit for BD MAXTM System. (Ct) = ciclo umbral. (\bar{X}) = media aritmética del Ct, (σ) = desviación estándar, (CV %) = coeficiente de variación, Neg = negativo, N/A.= no aplica.

Inter-ensayo

El inter-ensayo se probó analizando cuatro réplicas de las diferentes muestras en tres días diferentes por tres operadores distintos con VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System. Un resumen de los resultados se muestra en la siguiente tabla.

Respiratory Virus Mix / reaction tube					
Diana	Muestra	Canal	Ct (x)	σ	CV %
	2xLoD	475/520 (FAM)	30,33	0,38	1,27
SARS-CoV-2	5xLoD	475/520 (FAM)	28,93	0,28	0,97
	Control negativo	475/520 (FAM)	Neg	N/A	N/A
	2xLoD	530/565 (HEX)	32,61	0,66	2,03
Influenza B	5xLoD	530/565 (HEX)	31,55	0,46	1,45
	Control negativo	530/565 (HEX)	Neg	N/A	N/A
	2xLoD	585/630 (ROX)	32,94	0,99	2,99
Influenza A	5xLoD	585/630 (ROX)	31,95	0,76	2,37
	Control negativo	585/630 (ROX)	Neg	N/A	N/A
	2xLoD	630/665 (CY5)	32,80	0,74	2,27
RSV	5xLoD	630/665 (CY5)	31,67	0,53	1,68
	Control negativo	630/665 (CY5)	Neg	N/A	N/A
EIC	2xLoD	680/715 (CY5.5)	25,90	0,25	0,95
	5xLoD	680/715 (CY5.5)	25,99	0,40	1,55
	Control negativo	680/715 (CY5.5)	25,84	0,31	1,21

Tabla 37. Resultados de inter-ensayo de VIASURE Respiratory Virus Extended Mix Real Time PCR Detection Kit for BD MAXTM System. (Ct) = ciclo umbral. (\overline{X}) = media aritmética del Ct, (σ) = desviación estándar, (CV %) = coeficiente de variación, Neg = negativo, N/A.= no aplica.

Respiratory Virus Mix II reaction tube							
Diana	Muestra	Canal	Ct (x)	σ	CV %		
	2xLoD	475/520 (FAM)	31,86	0,71	2,22		
Parainfluenza virus	5xLoD	475/520 (FAM)	30,18	0,82	2,72		
	Control negativo	475/520 (FAM)	Neg	N/A	N/A		
	2xLoD	530/565 (HEX)	33,45	0,76	2,27		
Coronavirus	5xLoD	530/565 (HEX)	31,56	0,96	3,04		
	Control negativo	530/565 (HEX)	Neg	N/A	N/A		

	2xLoD	585/630 (ROX)	30,79	0,93	3,01
Metapneumovirus	5xLoD	585/630 (ROX)	29,68	0,88	2,97
	Control negativo	585/630 (ROX) Neg		N/A	N/A
	2xLoD	630/665 (CY5)	35,08	1,62	4,61
Adenovirus	5xLoD	630/665 (CY5)	33,20	0,77	2,33
	Control negativo	630/665 (CY5)	Neg	N/A	N/A
	2xLoD	680/715 (CY5.5)	25,49	0,31	1,21
EIC	5xLoD	680/715 (CY5.5)	25,65	0,33	1,30
	Control negativo	680/715 (CY5.5)	25,52	0,31	1,21

Tabla 38. Resultados de inter-ensayo de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System. (Ct) = ciclo umbral. (\bar{X}) = media aritmética del Ct, (σ) = desviación estándar, (CV %) = coeficiente de variación, Neg = negativo, N/A.= no aplica.

Inter-lote

Los valores de inter-lote se determinaron analizando seis réplicas de las diferentes muestras mediante el uso de tres lotes de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System. Un resumen de los resultados se muestra en las siguientes tablas.

Respiratory Virus Mix / reaction tube							
Diana	Muestra	Muestra Canal Ct (X		σ	CV %		
	2xLoD	475/520 (FAM)	29,07	0,45	1,53		
SARS-CoV-2	5xLoD	475/520 (FAM)	29,14	0,59	2,01		
	Control negativo	475/520 (FAM)	Neg	N/A	N/A		
	2xLoD	530/565 (HEX)	32,58	0,64	1,95		
Influenza B	5xLoD	530/565 (HEX)	31,01	1,03	3,31		
	Control negativo	530/565 (HEX)	Neg	N/A	N/A		
Influenza A	2xLoD	585/630 (ROX)	32,75	1,7	5,33		
	5xLoD	585/630 (ROX)	31,61	1,14	3,62		
	Control negativo	585/630 (ROX)	Neg	N/A	N/A		
	2xLoD	630/665 (CY5)	31,72	1,90	5,99		
RSV	5xLoD	630/665 (CY5)	30,21	1,35	4,46		
	Control negativo	630/665 (CY5)	Neg	N/A	N/A		
	2xLoD	680/715 (CY5.5)	25,40	0,31	1,23		
EIC	5xLoD	680/715 (CY5.5)	25,61	0,53	2,06		
	Control negativo	680/715 (CY5.5)	25,54	0,37	1,45		

Tabla 39. Resultados de inter-lote de VIASURE Respiratory Virus Extended Mix Real Time PCR Detection Kit for BD MAXTM System. (Ct) = ciclo umbral. (\overline{x}) = media aritmética del Ct, (σ) = desviación estándar, (CV %) = coeficiente de variación, Neg = negativo, N/A.= no aplica.

Respiratory Virus Mix II reaction tube							
Diana	Muestra	Canal	Ct (x)	σ	CV %		
	2xLoD	475/520 (FAM)	31,45	1,20	3,82		
Parainfluenza virus	5xLoD	475/520 (FAM)	29,53	0,59	1,99		
	Control negativo	475/520 (FAM)	Neg	N/A	N/A		
	2xLoD	530/565 (HEX)	32,35	0,71	2,20		
Coronavirus	5xLoD	530/565 (HEX)	30,18	1,33	4,39		
	Control negativo	530/565 (HEX)	Neg	N/A	N/A		
	2xLoD	585/630 (ROX)	31,66	1,00	3,16		
Metapneumovirus	5xLoD	585/630 (ROX)	29,16	1,25	4,29		
	Control negativo	585/630 (ROX)	Neg	N/A	N/A		
	2xLoD	630/665 (CY5)	33,23	0,70	2,12		
Adenovirus	5xLoD	630/665 (CY5) 32,83		1,06	3,23		
	Control negativo	630/665 (CY5)	Neg	N/A	N/A		
	2xLoD	680/715 (CY5.5)	24,82	0,43	1,73		
EIC	5xLoD	680/715 (CY5.5)	25,57	0,42	1,64		
	Control negativo	680/715 (CY5.5)	25,03	0,36	1,43		

Tabla 40. Resultados de inter-lote de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System. (Ct) = ciclo umbral. (\overline{X}) = media aritmética del Ct, (σ) = desviación estándar, (CV %) = coeficiente de variación, Neg = negativo, N/A.= no aplica.

Inter-termociclador

Los valores de inter-termociclador fueron determinados con seis réplicas de las mismas muestras utilizadas para el intra-ensayo, inter-ensayo y ensayo inter-lote, utilizando VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System. Los ensayos se realizaron en dos laboratorios con dos sistemas BD MAXTM diferentes. Un resumen de los resultados se muestra en las siguientes tablas.

Respiratory Virus Mix / reaction tube							
Diana	Muestra	Canal	Ct (x)	σ	CV %		
	2xLoD	475/520 (FAM)	30,30	0,29	0,96		
SARS-CoV-2	5xLoD	475/520 (FAM)	28,93	0,24	0,82		
	Negative control	475/520 (FAM)	Neg	N/A	N/A		
Influenza B	2xLoD	530/565 (HEX) 32,70		0,42	1,29		
	5xLoD	530/565 (HEX)	31,26	0,45	1,43		
	Negative control	530/565 (HEX)	Neg	N/A	N/A		
	2xLoD	585/630 (ROX)	33,33	1,47	4,42		
Influenza A	5xLoD	585/630 (ROX)	31,52	0,61	1,92		
	Negative control	585/630 (ROX)	Neg	N/A	N/A		
RSV	2xLoD	630/665 (CY5)	32,80	0,76	2,33		

	5xLoD	630/665 (CY5)	30,88	1,30	4,20
	Negative control	630/665 (CY5)	Neg	N/A	N/A
	2xLoD	680/715 (CY5.5)	35,97	0,32	1,24
EIC	5xLoD	680/715 (CY5.5)	25,71	0,33	1,28
	Negative control	680/715 (CY5.5)	25,96	0,37	1,44

Tabla 41. Resultados de ensayo inter-termociclador de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System. (Ct) = ciclo umbral. (\overline{X}) = media aritmética del Ct, (σ) = desviación estándar, (CV %) = coeficiente de variación, Neg = negativo, N/A.= no aplica.

Respiratory Virus Mix II reaction tube							
Diana	Muestra	Canal	Ct (x)	σ	CV %		
	2xLoD	475/520 (FAM)	31,95	0,83	2,61		
SARS-CoV-2	5xLoD	475/520 (FAM)	29,79	0,95	3,18		
	Negative control	475/520 (FAM)	Neg	N/A	N/A		
	2xLoD	530/565 (HEX)	34,26	0,74	2,15		
Influenza B	5xLoD	530/565 (HEX)	31,95	0,61	1,91		
	Negative control	530/565 (HEX)	Neg	N/A	N/A		
	2xLoD	585/630 (ROX)	31,59	0,50	1,58		
Influenza A	5xLoD	585/630 (ROX)	29,51	1,03	3,48		
	Negative control	585/630 (ROX)	Neg	N/A	N/A		
	2xLoD	630/665 (CY5)	34,14	0,72	2,12		
RSV	5xLoD	630/665 (CY5)	32,31	0,36	1,13		
	Negative control	630/665 (CY5)	Neg	N/A	N/A		
	2xLoD	680/715 (CY5.5)	25,35	0,22	0,85		
EIC	5xLoD	680/715 (CY5.5)	25,10	0,22	0,87		
	Negative control	680/715 (CY5.5)	25,73	0,28	1,11		

Tabla 42. Resultados de ensayo inter-termociclador de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System. (Ct) = ciclo umbral. (\bar{X}) = media aritmética del Ct, (σ) = desviación estándar, (CV %) = coeficiente de variación, Neg = negativo, N/A.= no aplica.

En conclusión, el estudio de precisión confirma el funcionamiento fiable y la consistencia de VIASURE Respiratory Virus Extended Mix Real Time PCR Detection Kit for BD MAX™ System.

12.5. Arrastre

La robustez (parámetro "arrastre") se analizó acorde a las especificaciones comunes para ciertos dispositivos IVD de clase D de acuerdo con la Regulación (EU) 2017/746, en particular, el Anexo XIII, que establece especificaciones comunes para dispositivos destinados a la detección o cuantificación de marcadores del virus SARS-CoV-2. Estas recomendaciones sólo se aplicaron a la diana del virus SARS-CoV-2, el resto de dianas del tubo de reacción *Respiratory Virus Mix I* no se analizaron en este ensayo. Sin embargo, el virus de la parainfluenza tipo 3 también se analizó como diana del tubo de reacción *Respiratory Virus Mix II* para realizar el ensayo con ambas Master Mixes.

La tasa de contaminación por arrastre se determinó testando 60 réplicas de muestras de hisopos nasofaríngeos negativos, y 60 réplicas de una muestra de RNA positiva para SARS-CoV-2, con un título elevado de RNA viral de SARS-CoV-2 (First WHO International Standard for SARS-CoV-2 RNA (NIBSC code: 20/146), a una concentración de 1E+02 IU/mL; y una muestra de RNA positive para el virus parainfluenza humano tipo 3, con un título elevado de RNA viral de HPIV 3 (Human parainfluenza virus 3 (ATCC Code: VR-93TM), a una concentración de 1E+05 TCID50/ml. En total, se analizaron cinco experimentos con muestras positivas y negativas empleando un método de ensayo basado en la configuración de tablero de ajedrez, que permite disponer las muestras de forma alterna.

En el caso del tubo de reacción *Respiratory Virus Mix I* reaction tube, se detectaron correctamente 60 de 60 muestras positivas y 59 de 60 muestras negativas dieron un resultado negativo, lo que supone una tasa de concordancia del 98,33%. En el caso del tubo de reacción *Respiratory Virus Mix II* reaction tube, todas las muestras positivas se detectaron correctamente y todas las muestras negativas dieron un resultado negativo. De acuerdo con los resultados de ambos tubos de reacción, la tasa de contaminación cruzada fue casi de 0%.

12.6. Tasa de fallo de todo el Sistema

La robustez (parámetro "tasa de fallo de todo el sistema") se analizó acorde a las indicaciones de las especificaciones comunes para dispositivos destinados a la detección o cuantificación de marcadores del virus SARS-CoV-2. Como estas recomendaciones solo aplican a la diana del virus SARS-CoV-2, el resto de dianas no fueron analizadas en este ensayo.

Para demostrar que las muestras de RNA de SARS-CoV-2 con baja positividad se detectan con VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit, se testaron con el ensayo VIASURE 119 muestras negativas de hisopos nasofaríngeos, contaminadas con la cepa First WHO International Standard for SARS-CoV-2 RNA (NIBSC code: 20/146), a una concentración equivalente a tres veces el LoD (3xLoD).

Los resultados del estudio indicaron que todas las réplicas fueron reactivas a la diana de SARS-CoV-2 RNA, lo que corresponde a una tasa de acuerdo del 100%. En conclusión, la tasa de fallo de todo el sistema es del 0%.

12.7. Especificidad y reactividad analítica

La especificidad y reactividad analítica se evaluaron para el producto VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System *in silico* y experimentalmente, empleando diferentes materiales de partida como cepas de referencia certificadas, RNA/DNAs de referencia certificados, así como material procedente de programas EQA.

12.7.1. Especificidad analítica

La especificidad analítica es la habilidad del ensayo para detectar la diana prevista. Hay dos componentes a tener en cuenta para la especificidad analítica: la reactividad cruzada y la interferencia. La reactividad cruzada puede ocurrir cuando las secuencias/genes relacionados genéticamente están presentes en un espécimen de paciente, mientras que la interferencia puede ocurrir si la presencia de sustancias específicas potencialmente presentes en las matrices de las muestras afecta al rendimiento de la RT-qPCR.

Reactividad cruzada: ensayo in silico

La reactividad cruzada se evaluó utilizando secuencias de referencia de diferentes patógenos del NCBI Genbank (https://www.ncbi.nlm.nih.gov/genbank/) y un software propio de análisis bioinformático. Se llevó a cabo tanto un análisis BLAST para cada primer y sonda sobre la Base de Datos de Nucleótidos NCBI GenBank, como un análisis bioinformático interno.

Las secuencias alineadas con un porcentaje de alineación inferior al 80% de homología se consideraron improbables de detectar. Los resultados obtenidos demostraron que todas las secuencias analizadas presentaban un porcentaje de homología inferior al 80% con los cebadores y el conjunto de sondas de SARS-CoV-2, Influenza A, Influenza B y RSV (tipos A y B) incluidos en *Respiratory Virus Mix I* reaction tube; parainfluenza (tipos 1, 2, 3 y 4), human coronavirus (229E, NL63 y HKU1), metapneumovirus and adenovirus incluidos en *Respiratory Virus Mix II* reaction tube.

En el caso de Coronavirus OC43, se obtuvieron los siguientes resultados:

Coronavirus OC43

El análisis BLAST filtrado por coronavirus OC43 (excluyendo coronavirus OC43, Identificación taxonómica: 31631) muestra una homología alta entre los cebadores y sondas, y las secuencias de betacoronavirus 1 de diferentes cepas de bovino, búfalo, oryx, jirafa, camello, canino, equino, porcino, conejo, antílope sable, ciervo sambar, tapir, ciervo de agua, antílope acuático, watusi, ciervo de cola blanca, yak. Sin embargo, estos virus no se han identificado en humanos, ni tampoco se consideran zoonóticos por el momento, por lo que no interfieren en la detección del coronavirus humano OC43.

Por lo tanto, ninguna de las secuencias analizadas, incluyendo aquellas que muestran una homología mayor del 80%, podrían afectar en la correcta detección de coronavirus OC43.

En conclusión, los diseños diana SARS-CoV-2, Influenza A, Influenza B, RSV (tipos A y B), parainfluenza (tipos 1, 2, 3 y 4), coronavirus humano (229E, NL63, HKU1 y OC43), metapneumovirus y adenovirus de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System no deberían causar falsos positivos en la detección de estos microorganismos cuando hay otros organismos presentes.

Especificidad analítica: ensayo experimental

Reactividad cruzada: ensayo experimental

La reactividad cruzada de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System fue confirmada probando un panel de diferentes microorganismos asociados a infecciones respiratorias añadidos en muestras nasofaríngeas negativas recogidas en BD™ Universal Viral Transport System. Cuando fue posible y se disponía de datos de concentración, se evaluaron los virus y bacterias interferentes a niveles médicamente relevantes (normalmente 1E+05 - 1E+06 ufc (unidad formadora de colonias)/ml para bacterias y 1E+04 - 1E+05 ufp (unidad formadora de placas)/ml para virus). No se detectaron reacciones cruzadas con ninguno de los siguientes microorganismos testados, excepto con los microorganismos diana que detecta el ensayo:

		Prueba de reactividad cruzada			
Adenovirus Tipo 15 (Especie D), cepa 35 [955, CH.38]	+/-	Influenza A virus A/Cambodia/e0826360/2020 (H3N2)	+/-	SARS-CoV-2	+/-
Adenovirus Tipo 2, especie C	+/-	Influenza A Virus A/Hawaii/31/2007 (H1N1)	+/-	SARS-CoV-2	+/-
Adenovirus Tipo 3, especie B	+/-	Influenza A Virus A/Mexico/4108/2009 (H1N1)pdm09	+/-	SARS-CoV-2 B.1.1.7_601443, variante UK	+/-
Adenovirus Tipo 31 (especie A) Cepa 1315/63	+/-	Influenza A Virus A/New York/18/2009 (H1N1)pdm09	+/-	SARS-CoV-2 B.1.1.7_710528, variante UK	+/-
Adenovirus Tipo 37	+/-	Influenza A Virus A/Qatar/1123/2007 (H1N1)	+/-	SARS-CoV-2 B.1.351	+/-
Adenovirus Tipo 4, especie E	+/-	Influenza A Virus A/South Dakota/6/2007 (H1N1)	+/-	SARS-CoV-2 Coronavirus 2 cepa 2019-nCoV/USA-WA1/2020	+/-
Adenovirus Tipo 40, cepa Dugan	+/-	Influenza A Virus A/South Dakota/6/2007 X-173 (H1N1)	+/-	SARS-CoV-2 variante Delta B.1.617.2	+/-
Adenovirus Tipo 41 (especie F), cepa Tak	+/-	Influenza A Virus A/Taiwan/760/2007 (H3N2)	+/-	SARS-CoV-2 variante Omicron, sublinaje BA.2	+/-
Adenovirus Tipo 5, especie C	+/-	Influenza A Virus A/Texas/71/2007 (H3N2)	+/-	SARS-CoV-2 variante Omicron, sublinaje BA.2	+/-
Adenovirus Tipo 6 (especie C), cepa Tonsil 99	+/-	Influenza B Virus B/Bangladesh/3333/2007 (Linaje Yamagata)	+/-	SARS-CoV-2 variante Omicron, sublinaje BA.2	+/-
Adenovirus Tipo 7A, especie B	+/-	Influenza B Virus B/Brisbane/3/2007 (Linaje Yamagata)	+/-	SARS-CoV-2 variante Omicron, sublinaje BA.2.75	+/-
Adenovirus Humano DNA Tipo 2	+/-	Influenza B Virus B/Pennsylvania/5/2007 (Linaje Victoria)	+/-	SARS-CoV-2 variante Omicron, sublinaje BA.2.75	+/-
Bordetella holmesii	-	Influenza B Virus B/Pennsylvania/7/2007 (Linaje Yamagata)	+/-	SARS-CoV-2 variante Omicron, sublinaje BA.4	+/-
Bordetella parapertussis	-	Influenza B Virus B/Santiago/4364/2007 (Linaje Yamagata)	+/-	SARS-CoV-2 variante Omicron, sublinaje BA.4	+/-
Bordetella pertussis	-	Influenza B Virus B/Victoria/304/2006 (Linaje Victoria)	+/-	SARS-CoV-2 variante Omicron, sublinaje BA.4	+/-
Bordetella pertussis cepa tipo	-	Klebsiella pneumoniae subsp. Pneumoniae cepa PCI 602	-	SARS-CoV-2 variante Omicron, sublinaje BA.5	+/-
Candida albicans	-	Legionella Pneumophila Sg1 (ST47)	-	SARS-CoV-2 variante Omicron, sublinaje BA.5	+/-

		Prueba de reactividad cruzada			
Chlamydophila pneumoniae cepa CM-1	-	Legionella pneumophila Sg1 (ST62)	-	SARS-CoV-2 variante Omicron, sublinaje BA.5	+/-
Coronavirus HKU	+/-	<i>Legionella pneumophila</i> subsp. Pneumophila cepa Philadelphia-1	-	SARS-CoV-2 variante Omicron, sublinaje BA.5	+/-
Coronavirus NL63	+/-	MERS-CoV cepa Florida/USA- 2_Saudi Arabia_2014	-	SARS-CoV-2 variante Omicron, sublinaje BQ.1	+/-
Enterovirus D58 US/MO/14- 18949	ı	Moraxella catarrhalis cepa 59632	-	SARS-CoV-2 variante Omicron, sublinaje BQ.1	+/-
Haemophilus influenzae	-	Mycoplasma pneumoniae	-	SARS-CoV-2 variante Omicron, sublinaje BQ1.1	+/-
Haemophilus influenzae	-	<i>Mycoplasma pneumoniae</i> cepa Pl 1428	-	SARS-CoV-2 variante Omicron, sublinaje BQ1.1	+/-
Haemophilus influenzae cepa L-378	-	Parainfluenza virus tipo 2	+/-	SARS-CoV-2 variante Omicron, sublinaje XBB	+/-
Human rinovirus 17 cepa 33342	1	Parainfluenza virus tipo 3	-/-	SARS-CoV-2 variante Omicron, sublinaje XBB	+/-
Influenza A Virus A/Brisbane/10/2007 (H3N2)	+/-	Pneumocystis jirovecii	-	SARS-CoV-2 SARS-CoV-2 aislado Australia/VIC01/2020	+/-
Influenza A Virus A/Brisbane/10/2007 IVR-147 (H3N2)	+/-	<i>Pseudomonas aeruginosa</i> cepa RH 815	-	SARS-CoV-2 SARS-CoV-2 aislado Wuhan-Hu-1	+/-
Influenza A Virus A/Brisbane/59/2007 (H1N1)	+/-	RSV A 2000/3-4	+/-	SARS-CoV-2	+/-
Influenza A Virus A/Brisbane/59/2007 IVR-148 (H1N1)	+/-	RSV cepa A-2	+/-	Staphylococcus epidermis cepa PCI 1200	-
Influenza A Virus A/California/07/2009 (H1N1)pdm09	+/-	RSV Tipo B	+/-	Streptococcus pneumoniae	-
Influenza A Virus A/California/07/2009 NYMC X- 179A (H1N1)pdm09	+/-	SARS-CoV-1 cepa Frankfurt 1	+/-	Streptococcus pneumoniae cepa [CIP 104225]	-
Influenza A Virus A/Cambodia/0371/2007 (H1N1)	+/-				

Tabla 43. Microorganismos patógenos de referencia incluidos en el estudio de reactividad cruzada. El resultado +/- se refiere al resultado positivo o negativo obtenido en los diferentes canales en función de la diana detectada. En caso de que un microorganismo analizado sea una de las dianas detectadas por el dispositivo, se obtiene un resultado positivo en su canal correspondiente, pero un resultado negativo en los demás canales.

En conclusión, los resultados de los ensayos de reactividad cruzada indican una alta especificidad de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System para la detección de los microorganismos diana, minimizando así el riesgo de falsos positivos. Puesto que no se observan amplificaciones inespecíficas con otros microorganismos relacionados, esto sugiere que el dispositivo es capaz de distinguir con exactitud las dianas.

Estudio de coinfección

Se realiza un estudio de coinfección, utilizando las cepas referencia detalladas en la tabla 28 de las dianas representativas seleccionadas para cada canal de fluorescencia: SARS-CoV-2, influenza A, Influenza B, RSV B, parainfluenza virus tipos 3, coronavirus OC43, metapneumovirus y adenovirus; a diferentes concentraciones, para confirmar que la presencia de cualquiera de ellos, independientemente de la concentración, no altera la detección entre ellos. Se analizaron nueve muestras nasofaríngeas enriquecidas con el material de referencia, una diana a baja concentración (3xLoD) y las otras dianas a una concentración muy alta, normalmente 1E+04 - 1E+05 unidades/ml, si es posible.

Los resultados confirman que la detección de los microorganismos diana no se altera cuando se analiza con VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System en coinfección a diferentes concentraciones.

Estudio de agentes microbianos interferentes

Se realiza un estudio de agentes microbianos interferentes para analizar los posibles agentes microbianos interferentes para VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System. Se analizó un panel de diferentes microorganismos asociados a enfermedades respiratorias en presencia de SARS-CoV-2, influenza A and B viruses, RSV B, parainfluenza virus tipo 3, coronavirus OC43, metapneumovirus y adenovirus (cepas de referencia detalladas en la tabla 28) a una concentración de 3xLoD. Cuando fue posible y se disponía de datos de concentración, se evaluaron los virus y bacterias interferentes a niveles médicamente relevantes (normalmente 1E+05 - 1E+06 ufc (unidad formadora de colonias)/ml para bacterias y 1E+04 - 1E+05 ufp (unidad formadora de placas)/ml para virus). Cada análisis puntual se realizó dos veces por muestra.

Un control de matriz positiva (Positive Matrix Control, PMC) y un control de matriz negativa (Negative Matrix Control, NMC) se incluyeron como controles de la prueba. PMC corresponde a la matriz nasofaríngea negativa enriquecida con DNA específico de las cepas diana sin ningún agente microbiano interferente, mientras que NMC corresponde a la matriz nasofaríngea negativa sin ningún agente microbiano interferente.

Respiratory Virus Mix / reaction tube y Respiratory Virus Mix // reaction tube					
Nombre del microorganism	Concentración testada	Resultado			
PMC	N/A	N.I			
NMC	N/A	N.I			
Rinovirus humano 17	1,60E+04 TCID50/ml	N.I			
Enterovirus D58	4,00E+04 TCID50/ml	N.I			
MERS-CoV	3,55E+03 TCID50/ml	N.I			
Chlamydophila pneumoniae	3,16E+04 TCID50/ml	N.I			
Streptococcus pneumoniae	1,80E+03 CFU/µl	N.I			
Mycoplasma pneumoniae	1,00E+05 CFU/ml	N.I			

Candida albicans	4,18E+06 CFU/ml	N.I
Staphylococcus epidermidis	3,60E+06 CFU/ml	N.I
SARS-CoV 1	5,20E+02 cop/ml	N.I
Bordetella pertussis	1,20E+05 CFU/ml	N.I
Bordetella holmesii	4,10E+04 CFU/ml	N.I
Bordetella parapertussis	1,20E+05 CFU/ml	N.I
Klebsiella pneumoniae	3,65E+04 CFU/µl	N.I
Moraxella catarrhalis	1,00E+06 CFU/ml	N.I
Legionella pneumohila subsp. pneumophila	5,60E+04 CFU/µl	N.I
Haemophilus influenzae	5,20E+03 CFU/µl	N.I
Pseudomonas aeruginosa	4,90E+06 CFU/ml	N.I
Pneumocystis jirovecii	1,00E+03 cop/µl	N.I

Tabla 44. Estudio de agentes microbianos interferentes. N.I. = Interferencias no notificables.

En conclusión, no se observaron interferencias en la detección de los ácidos nucleicos diana con ninguno de los microorganismos ensayados.

Estudio de sustancias interferentes

Se realiza un estudio de sustancias interferentes para probar el posible efecto de interferencia de sustancias endógenas y exógenas en VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System. Se añadieron un total de veinte sustancias potencialmente interferentes a la matriz nasofaríngea negativa enriquecida con las cepas de referencia detalladas en la tabla 28 para SARS-CoV-2, influenza A, Influenza B virus, RSV B, parainfluenza virus tipo 3, coronavirus OC43, metapneumovirus y adenovirus y se evaluaron con seis réplicas.

Un control de matriz positiva (Positive Matrix Control, PMC) y un control de matriz negativa (Negative Matrix Control, NMC) se incluyeron como controles de la prueba. PMC corresponde a la matriz nasofaríngea negativa enriquecida con DNA específico de las cepas diana sin sustancias interferentes, mientras que NMC corresponde a la matriz nasofaríngea negativa sin sustancias interferentes potenciales ni microorganismos/material de referencia añadidos. Se obtuvieron los siguientes resultados:

Respiratory Virus Mix I reaction tube y Respiratory Virus Mix II reaction tube					
Nombre de la sustancia	Concentración testada	Resultado			
PMC	N/A	N.I.			
NMC	N/A	N.I.			
Oseltamivir	3,99E-04 mg/ml	N.I.			
Zanamivir	3,30 mg/ml	N.I.			
Azitromicina	1,10E-02 mg/ml	N.I.			
Mupirocina	1,50E-03 mg/ml	N.I.			
Tobramicina	3,30E-02 mg/ml	N.I.			
Albumina	1,00E+01mg/ml	N.I.			

DNA Genómico	3,50E-03 mg/ml	N.I.
Mucosa humana (Esputo)	1,00 % (v/v)	N.I.
Mucina	2,50E+00 mg/ml	N.I.
Triglicéridos	1,50E+01 mg/ml	N.I.
Sangre entera	1,00 % (v/v)	N.I.
Carbocisteína	5,00E+00 mg/ml	N.I.
N-acetilcisteína (NAC)	1,50E-01 mg/ml	N.I.
Fenilefrina	3,00E-05 mg/ml	N.I.
Fluticasona	1,26E-06 mg/ml	I
Fluticusoriu	3,15E-07 mg/ml	N.I.
Galphimia glauca, luffa operculata	1,25E+01 mg/ml	N.I.
Clorhidrato de oximetazolina	1,00E-01 mg/ml	N.I.
Cloruro de sodio	9,00E-01 mg/ml	N.I.
Nicotina	3,00E-02 mg/ml	I
Nicound	7,50E-04 mg/ml	N.I.
Benzocaína	3,00E+00 mg/ml	N.I.

Tabla 45. Sustancias potencialmente interferentes. N.I: Interferencias no notificables, I: Interferencia.

Diferentes sustancias potencialmente interferentes, tanto endógenas como exógenas, han sido evaluadas con VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System. Se observaron interferencias al testar fluticasona (1,26E-06 mg/ml) y nicotina (3,00E-02 mg/ml) tanto en *Respiratory Virus Mix I* reaction tube como en *Respiratory Virus Mix II* reaction tube, y se realizó una dilución 1/4 para comprobar que este efecto de interferencia no se observa a concentraciones más bajas. Los resultados obtenidos permiten concluir que, a las concentraciones finales testadas no se observan interferencias para ninguna de las sustancias evaluadas.

12.7.2. Reactividad analítica

La reactividad analítica puede definirse como el porcentaje de cepas microbianas diana o muestras de DNA/RNA que dan un lugar a resultados positivos correctos. La reactividad analítica se estudió mediante análisis *in silico* y experimentales.

Reactividad analítica: evaluación in silico

La reactividad analítica de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System se evaluó utilizando bases de datos de secuencias de nucleótidos de acceso público como NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/), Global Initiative on Sharing All SARS-CoV-2 Data (GISAID EpiCoV database (https://www.gisaid.org/)), Global Initiative on Sharing All Influenza Data (GISAID EpiFlu database (https://www.gisaid.org/)), Global Initiative on Sharing All RSV Data (GISAID EpiRSV database (https://www.gisaid.org/)), y un programa interno de análisis bioinformático, para demostrar que los genes diana pueden detectarse correctamente con el dispositivo. El análisis *in silico* del diseño de los

cebadores y las sondas se realizó mediante alineamiento frente a secuencias disponibles en la base de datos nucleotide collection (nr/nt). Los resultados obtenidos tras el análisis de las secuencias incluidas se muestran en la siguiente tabla:

Microorganismo	Gen	% secuencias detectadas experimentalmente sin discordancias	% secuencias detectadas experimentalmente con discordancias	Número de secuencias alineadas
SARS-CoV-2	Gen <i>N</i> , región N1 y región N2	98,08%	-	22.404
Influenza A	Gen <i>HA</i> + Gen <i>M1</i>	0,88%	32,92%	99.326
Influenza B	Gen <i>M1</i>	21,63%	70,58%	24.369
RSV A	Gen N	2,32%	80,83%	4.002
RSV B	Gen N	2,61%	80,11%	4.172
Parainfluenza 1 Parainfluenza 2 Parainfluenza 3 Parainfluenza 4	Gen <i>HN</i> Gen <i>HN</i> Gen <i>HN</i> Gen <i>F</i>	19,23%	-	1451
Coronavirus OC43	Gen <i>N</i>	76,32%	-	380
Coronavirus 229E	Gen N	0,00%*	-	266
Coronavirus NL63	Gen N	48,12%	-	293
Coronavirus HKU1	Gen N	46,51%	-	215
Metapneumovirus	Gen <i>F</i>	93,7%	-	2.144
Adenovirus A	Gen <i>Hexon</i>	98,7%	-	154
Adenovirus B	Gen <i>Hexon</i>	98,75%	-	718
Adenovirus C	Gen <i>Hexon</i>	96,17%	-	392
Adenovirus D	Gen <i>Hexon</i>	97,74%	-	310
Adenovirus E	Gen <i>Hexon</i>	89,53%	-	172
Adenovirus F	Gen <i>Hexon</i>	96,40%	-	250
Adenovirus G	Gen <i>Hexon</i>	90,48	-	21

Tabla 46. Análisis in silico de la reactividad analítica.

En resumen, el análisis de inclusividad mostró una detección correcta de SARS-CoV-2, Influenza A, Influenza B, RSV (tipos A y B), parainfluenza (tipos 1, 2, 3 y 4), coronavirus (NL63, 229E, HKU1 y OC43), metapneumovirus y adenovirus con VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System.

Reactividad analítica: evaluación experimental

La reactividad analítica de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System para SARS-CoV-2 se evaluó frente al RNA de las siguientes cepas añadidas en muestras nasofaríngeas negativas recogidas en BD™ Universal Viral Transport System, mostrando resultados positivos:

^{*}La mayoría de las secuencias de coronavirus 229E del NCBI GenBank incluidas en el análisis *in silico* presentan 1 o 2 discordancias que no afectan a la correcta detección de la diana. Además, el ADN sintético de Coronavirus 229E utilizado durante la validación analítica del producto muestra un 100% de homología con el conjunto de primers y sondas, demostrando experimentalmente su correcta detección.

SARS-Related Coronavirus 2, aislado USA-WA1/2020, Gamma-Irradiated (NR-52287), Quantitative Synthetic SARS-CoV-2 RNA: ORF, E, N (VR-3276SD), Genomic RNA from 2019 Novel Coronavirus (VR-1986D), 2019 novel coronavirus (SARS-CoV-2) Working Reagent for Nucleic Acid Amplification Testing (NAT) (NIBSC 20/110), Research Reagent for SARS-CoV-2 RNA (NIBSC 19/304), Twist Synthetic SARS-CoV-2 RNA Control 1 (MT007544.1): SARS-CoV-2 aislado Australia/VIC01/2020 (Twist Bioscience 102019), Twist Synthetic SARS-CoV-2 RNA Control 2 (MN908947.3): SARS-CoV-2 aislado Wuhan-Hu-1 (Twist Bioscience 102024), Twist Synthetic SARS-CoV-2 RNA Control 14 (B.1.1.7_710528), variante UK (Twist Bioscience 103907), Twist Synthetic SARS-CoV-2 RNA Control 15 (B.1.1.7_601443), variante UK (Twist Bioscience 103909), Twist Synthetic SARS-CoV-2 RNA Control 16 (EPI_ISL_678597), variante sudafricana (Twist Bioscience 104043), Twist Synthetic SARS-CoV-2 RNA Control 17 (EPI_ISL_792683), variante Japón/Brasil (Twist Bioscience 104044), Accuplex™ SARS-CoV-2 Verification Panel (SeraCare c0505-0129), AMPLIRUN® SARS-CoV-2 B.1.351 RNA CONTROL (MBC139-R), AMPLIRUN® TOTAL SARS-CoV-2 CONTROL (SWAB) (MBTC030-R), AMPLIRUN TOTAL SARS-CoV-2-FluA-FluB-RSV CONTROL (MBTC031-R), SARS-CoV-2 Variante Omicron, sublinaje BA.5 (SCV2_23C1A-01), SARS-CoV-2 Variante Omicron, sublinaje BA.2 (SCV2_23C1A-02), SARS-CoV-2 Variante Omicron, sublinaje BA.5 (SCV2_23C1A-03), SARS-CoV-2 Variante Omicron, sublinaje BA.4 (SCV2_23C1A-05), SARS-CoV-2 Variante Omicron, sublinaje BA.4 (SCV2_23C1B-01), SARS-CoV-2 Variante Omicron, sublinaje BA.5 (SCV2_23C1B-03, SARS-CoV-2 Variante Omicron, sublinaje BA.4 (SCV2_23C1B-04), SARS-CoV-2 Variante Omicron variant, sublinaje BA.2 (SCV2_23C1B-05), SARS-CoV-2 Variante Delta B.1.617.2 (SCV2_24C1B-01), SARS-CoV-2 Variante Omicron, sublinaje BA.2.75 (SCV2_23C1C-01), SARS-CoV-2 Variante Omicron, sublinaje BQ.1 (SCV2_23C1C-02), SARS-CoV-2 Variante Omicron, sublinaje BQ1.1 (SCV2_23C1C-03), SARS-CoV-2 Variante Omicron, sublinaje XBB (SCV2_23C1C-04), SARS-CoV-2 Variante Omicron, sublinaje BA.2 (SCV2_23C1C-05), SARS-CoV-2 Variante Omicron, sublinaje XBB (SCV2_23C1D-01), SARS-CoV-2 Variante Omicron, sublinaje BQ1.1 (SCV2_23C1D-02), SARS-CoV-2 Variante Omicron, sublinaje BA.2.75 (SCV2_23C1D-03), SARS-CoV-2 Variante Omicron, sublinaje BQ.1 (SCV2_23C1D-04) y SARS-CoV-2 Variante Omicron, sublinaje BA.5 (SCV2_23C1D-05).

La reactividad analítica de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System para Influenza A se evaluó frente al RNA de las siguientes cepas, mostrando resultados positivos:

Influenza A Virus, A/Brisbane/59/2007 (H1N1) (FR-1), Influenza A Virus, A/South Dakota/6/2007 (H1N1) (FR-3), Influenza A Virus, A/Hawaii/31/2007 (H1N1) (FR-5), Influenza A Virus, A/Qatar/1123/2007 (H1N1) (FR-6), Influenza A Virus, A/Cambodia/0371/2007 (H1N1) (FR-7), Influenza A Virus, A/Brisbane/10/2007 (H3N2) (FR-8), Influenza A Virus, A/Taiwan/760/2007 (H3N2) (FR-12), Influenza A Virus, A/Texas/71/2007 (H3N2) (FR-13), Influenza A Virus, A/Brisbane/10/2007 IVR-147 (H3N2) (FR-27), Influenza A Virus, A/Brisbane/59/2007 IVR-148 (H1N1) (FR-28), Influenza A Virus, A/South Dakota/6/2007 X-173 (H1N1) (FR-29), Influenza A Virus, A/California/07/2009 (H1N1)pdm09 (FR-201), Influenza A Virus, A/California/08/2009

(H1N1)pdm09 (FR-202), Influenza A Virus, A/New York/18/2009 (H1N1)pdm09 (FR-203), Influenza A Virus, A/Mexico/4108/2009 (H1N1)pdm09 (FR-245), Influenza A Virus, A/California/07/2009 NYMC X-179A (H1N1)pdm09 (FR-246), Influenza A/Victoria/2570/2019 (H1N1) and/or Influenza A/Darwin/6/2021 (H3N2) (Vaccine Fluarix Tetra 2022/2023), Influenza A/Victoria/4897/2022 (H1N1) and/or Influenza A/Darwin/6/2021 (H3N2) (Vaccine Fluarix Tetra 2023/2024), AMPLIRUN TOTAL SARS-CoV-2-FluA-FluB-RSV CONTROL (Vircell MBTC031-R) e Influenza A Virus, H3/H2N2 (CAP ID3-09 2023).

La reactividad analítica de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System para Influenza B se evaluó frente al RNA de las siguientes cepas, mostrando resultados positivos:

Influenza B Virus, B/Pennsylvania/7/2007 (Linaje Yamagata) (FR-16), Influenza B Virus, B/Santiago/4364/2007 (Linaje Yamagata) (FR-17), Influenza B Virus, B/Brisbane/3/2007 (Linaje Yamagata) (FR-18), Influenza B Virus, B/Pennsylvania/5/2007 (Linaje Victoria) (FR-19), Influenza B Virus, B/Victoria/304/2006 (Linaje Victoria) (FR-20), Influenza B Virus, B/Bangladesh/3333/2007 (Linaje Yamagata) (FR-183), AMPLIRUN TOTAL SARS-CoV-2-FluA-FluB-RSV CONTROL (MBTC031-R), Influenza B/Austria/1359417/2021 y/o Influenza B/Phuket/3073/2013 (Vaccine Fluarix Tetra 2022/2023) e Influenza B/Austria/1359417/2021 y/o Influenza B/Phuket/3073/2013 (Vaccine Fluarix Tetra 2023/2024).

La reactividad analítica de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System para RSV se evaluó frente al RNA del Virus Respiratorio Sincitial Humano A (cepa A-2) (FR-294), Virus Respiratorio Sincitial Humano A 2000/3-4 (NR-28530), AMPLIRUN TOTAL SARS-CoV-2-FluA-FluB-RSV CONTROL (MBTC031-R) y Virus Respiratorio Sincitial Humano B (INSTAND 359043), mostrando resultados positivos.

La reactividad analítica de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System parainfluenza se evaluó frente al RNA de Parainfluenza Virus serotipo 1 (NIBSC 08/176), Parainfluenza Virus serotipo 2 (NIBSC 08/178), Parainfluenza Virus serotipo 4 (NIBSC 08/180), Parainfluenza Virus 2 (PINFRNA101S-06) y Parainfluenza Virus 3 (PINFRNA22S-02), mostrando resultados positivos.

La reactividad analítica de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System para coronavirus se evaluó frente al RNA de Quantitative Synthetic Human coronavirus cepa NL63 RNA (VR-3263SD) y Coronavirus HKU (CVRNA22S-04), mostrando resultados positivos.

La reactividad analítica de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System para metapneumovirus se evaluó frente al RNA de AMPLIRUN® METAPNEUMOVIRUS RNA CONTROL (MBC144-R), Human metapneumovirus (NIBSC 08/320) y Quantitative Synthetic Human metapneumovirus hMPV RNA (VR-3250SD), mostrando resultados positivos.

La reactividad analítica de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX[™] System para adenovirus se evaluó frente al DNA de las siguientes cepas, mostrando resultados positivos:

Adenovirus tipo 2, especie C (0810110CF), Adenovirus tipo 3, especie B (0810062CFHI), Adenovirus tipo 4, especie E (0810070CFHI), Adenovirus tipo 5, especie C (0810020CF), Adenovirus tipo 6 (especie C), cepa Tonsil 99 (VR-6), Adenovirus tipo 7A, especie B (0810021CFHI), Adenovirus tipo 15 (especie D), cepa 35 [955, CH.38] (VR-16), Adenovirus tipo 31 (especie A) cepa 1315/63 (VR-3343), Adenovirus tipo 37 (0810119CFHI), Adenovirus tipo 40, cepa Dugan (0810084CFHI), Adenovirus tipo 41 (especie F), cepa Tak (0810085CFHI) y "First WHO International Standard for Human Adenovirus DNA (NIBSC code: 16/324)".

12.8. Trazabilidad metrológica

Este dispositivo no está diseñado para fines de medición.

13. Características del funcionamiento clínico

El funcionamiento clínico de VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System fue evaluado utilizando muestras nasofaríngeas recogidas por personal de enfermería con un hisopo estéril flexible de nailon y colocadas en un tubo estéril con 3 ml de Universal Transport Media® (UTM®) (Copan). Los resultados fueron los siguientes:

	Lugar Tipo de muestra		Proceso	Diana		
				SARS-CoV-2		
			Influenza A			
	Hospital Universitario Miguel Servet (Zaragoza, España) Hisopos nasofaríngeos (estudio retrospectivo)	BD MAX™ ExK™ TNA-3 kit + BD	Influenza B			
1			RSV (tipos A y B)			
1		,	MAX™ System	Parainfluenza (tipos 1, 2, 3 y 4)		
				Coronavirus (OC43, NL63, 229 y HKU1)		
				Metapneumovirus		
				Adenovirus		

Tabla 47. Lugar, tipo de muestras, proceso y diana.

Los verdaderos valores positivos y negativos, los valores falsos positivos y negativos, sensibilidad, especificidad, los valores predictivos positivos (PPV) y valores predictivos negativos (NPV) y cociente de verosimilitud (LR) para VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System fueron calculados en relación con cada ensayo comparador como se muestra en la siguiente tabla:

Centro	Ensayo comparador	Diana	TP	TN	FP	FN	Sensibilidad	Especificidad	PPV	NPV	LR+	LR-
Cobas® SARS-CoV-2 & Influenza A/B assay (Roche)	Cobas®	SARS- CoV-2	110	733	7	6	0,95 (0,89-0,98)	0,99 (0,98-0,99)	0,94 (0,88-0,97)	0,99 (0,98-0,99)	100,3 (47,9- 209,8)	0,052 (0,02- 0,11)
	& Influenza A/B assay	Flu A	143	699	4	10	0,94 (0,88-0,97)	0,99 (0,98-0,99)	0,97 (0,93-0,99)	0,99 (0,97-0,99)	164,3 (61,8- 436,8)	0,066 (0,04- 0,12)
	(Roche)	Flu B	29	826	0	1	0,97 (0,83-0,99)	1 (0,99-1)	1 (0,88-1)	0,99 (0,99-1)	1574 (98,4- 25172)	0,048 (0,01- 0,23)
		Influenza A	143	699	4	10	0,94 (0,88-0,97)	0,99 (0,98-0,99)	0,97 (0,93-0,99)	0,99 (0,97-0,99)	164,3 (61,8- 436,8)	0,066 (0,04- 0,12)
1 Allplex™ RV Essential Assay (Seegene)		Influenza B	29	826	0	1	0,97 (0,83-0,99)	1 (0,99-1)	1 (0,88-1)	0,99 (0,99-1)	1574 (98,4- 25172)	0,048 (0,01- 0,23)
	Allplex™ RV Essential	RSV	60	787	6	3	0,95 (0,87-0,99)	0,99 (0,98-0,99)	0,91 (0,82-0,96)	0,99 (0,98-0,99)	125.9 (56,61- 279,9)	0,048 (0,01- 0,15)
	,	Parainfluen za (tipos 1, 2, 3 y 4)	74	765	9	8	0,90 (0,82-0,96)	0,99 (0,98-0,99)	0,90 (0,82-0,95)	0,99 (0,98-0,99)	77,61 (40,38- 149,2)	0,099 (0,05- 0,19)
		Metapneu movirus	73	778	1	4	0,95 (0,87-0,99)	0,99 (0,99-1)	0,99 (0,93-0,99)	0,99 (0,98-0,99)	738,5 (104,1- 5240)	0,052 (0,02- 0,14)
		Adenovirus	64	786	5	1	0,99 (0,92-1)	0,99 (0,98-0,99)	0,93 (0,84-0,97)	0,99 (0,99-1)	155,8 (65- 373,4)	0,015 (0,002- 0,11)
	Allplex™ Respiratory Panel 3 (Seegene) + sequencing	Coronaviru s (OC43, NL63, 229 and HKU1)	39	813	2	2	0,95 (0,84-0,99)	0,99 (0,99-1)	0,95 (0,84-0,99)	0,99 (0,99-1)	387,6 (96,9- 1549,9)	0,049 (0,013- 0,189)

Tabla 48. Valores de verdadero positivo (TP) y negativo (TN), valores de falso positivo (FP) y falso negativo (FN), sensibilidad, especificidad, valores predictivos positivos (PPV), valores predictivos negativos (NPV) y cociente de verosimilitud (LR) para VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAX™ System.

En conclusion, estos resultados muestran un alto nivel de concordancia para detectar SARS-CoV-2, Influenza A, Influenza B, RSV (tipos A y B), parainfluenza (tipos 1, 2, 3 y 4), coronavirus (OC43, NL63, 229E y HKU1), metapneumovirus y adenovirus utilizando VIASURE *Respiratory Virus Extended Mix* Real Time PCR Detection Kit for BD MAXTM System.

Bibliografía

Abu-Raya, B., Viñeta Paramo, M., Reicherz, F., & Lavoie, P. M. (2023). Why has the epidemiology of RSV changed during the COVID-19 pandemic? *EClinicalMedicine*, *61*, 102089. https://doi.org/10.1016/j.eclinm.2023.102089

Bergeron, H. C., & Tripp, R. A. (2021). Immunopathology of RSV: An Updated Review. *Viruses*, *13*, 2478. https://doi.org/10.3390/v13122478

Buckwalter, S. P., Teo, R., Espy, M. J., Sloan, L. M., Smith, T. F., & Pritt, B. S. (2012). Real-time qualitative PCR for 57 human adenovirus types from multiple specimen sources. *Journal of Clinical Microbiology*, *50*(3), 766–771. https://doi.org/10.1128/JCM.05629-11

CDC J. (2023). COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/your-health/about-covid-19.html

Datta, N. (2023). A review of molecular biology detection methods for human adenovirus. *AIMS Biophysics*, 10(1), 95–120. https://doi.org/10.3934/BIOPHY.2023008

Fernández-Pérez, G. C., Oñate Miranda, M., Fernández-Rodríguez, P., Velasco Casares, M., Corral de la Calle, M., Franco López, Díez Blanco, M., & Cuchat, J. M. O. (2021). SARS-CoV-2: cómo es, cómo actúa y cómo se expresa en la imagen. *Radiologia*, *63*, 115–126. https://doi.org/10.1016/j.rx.2020.10.006

Friedman, N., Alter, H., Hindiyeh, M., Mendelson, E., Avni, Y. S., & Mandelboim, M. (2018). Human Coronavirus Infections in Israel: Epidemiology, Clinical Symptoms and Summer Seasonality of HCoV-HKU1. *Viruses*, *10*. https://doi.org/10.3390/v10100515

Gaunt, E. R., Hardie, A., Claas, E. C. J., Simmonds, P., & Templeton, K. E. (2010). Epidemiology and Clinical Presentations of the Four Human Coronaviruses 229E, HKU1, NL63, and OC43 Detected over 3 Years Using a Novel Multiplex Real-Time PCR Method. *JOURNAL OF CLINICAL MICROBIOLOGY*, 48(8), 2940–2947. https://doi.org/10.1128/JCM.00636-10

Henrickson, K. J. (2003). Parainfluenza Viruses. *CLINICAL MICROBIOLOGY REVIEWS*, *16*(2), 242–264. https://doi.org/10.1128/CMR.16.2.242-264.2003

Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID-19. *Nature Reviews Microbiology*, *19*, 141–154. https://doi.org/10.1038/s41579-020-00459-7

Ison, M. G., & Hayden, R. T. (2016). Adenovirus. *Microbiology Spectrum, 4*(4), DMIH2-0020–2015. https://doi.org/10.1128/microbiolspec

Jansen, R. R., Schinkel, J., Koekkoek, S., Pajkrt, D., Beld, M., De Jong, M. D., & Molenkamp, R. (2011). Development and evaluation of a four-tube real time multiplex PCR assay covering fourteen respiratory viruses, and comparison to its corresponding single target counterparts. *Journal of Clinical Virology*, *51*, 179–185. https://doi.org/10.1016/j.jcv.2011.04.010

Krammer, F., Smith, G. J. D., Fouchier, R. A. M., Peiris, M., Kedzierska, K., Doherty, P. C., Palese, P., Shaw, M. L.,

Treanor, J., Webster, R. G., & García-Sastre, A. (2018). Influenza. *Nature Reviews Disease Primers*, *4*(3), 1–21. https://doi.org/10.1038/s41572-018-0002-y

Lim, Y. X., Ng, Y. L., Tam, J. P., & Liu, D. X. (2016). Human Coronaviruses: A Review of Virus-Host Interactions. *Diseases, 4*(26), 1–28. https://doi.org/10.3390/diseases4030026

Lynch, J. P., & Kajon, A. E. (2016). Adenovirus: Epidemiology, Global Spread of Novel Serotypes, and Advances in Treatment and Prevention. *Seminars in Respiratory and Critical Care Medicine*, *37*, 586–602. https://doi.org/10.1055/s-0036-1584923

Safiabadi Tali, S. H., LeBlance, J. J., Sadiq, Z., Oyewunmi, O. D., Camargo, C., Nikpuor, B., Armanfard, N., Sagan, S. M., & Jahanshahi-Anbuhi, S. (2021). Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. *Clinical Microbiology Reviews*, *34*(3), e00228-20.

Schuster, J. E., & Williams, J. V. (2013). Human Metapneumovirus. Pediatrics in Review., 34 No.12.

Templeton, K. E., Scheltinga, S. A., Beersma, M. F. C., Kroes, A. C. M., & Claas, E. C. J. (2004). Rapid and Sensitive Method Using Multiplex Real-Time PCR for Diagnosis of Infections by Influenza A and Influenza B Viruses, Respiratory Syncytial Virus, and Parainfluenza Viruses 1, 2, 3, and 4. *JOURNAL OF CLINICAL MICROBIOLOGY*, 42(4), 1564–1569. https://doi.org/10.1128/JCM.42.4.1564-1569.2004

Tyrrell, carina S., Allen, J. L. Y., & Gkrania-Klotsas, E. (2021). Influenza: epidemiology and hospital management. *Medicine (Abingdon, England: UK Ed.)*, 49(12), 797–804.

Uddin, S., & Thomas, M. (2020). Human Metapneumovirus. In *StatsPearls*. StatPearls Publishing. https://doi.org/10.1016/B978-0-323-40181-4.00226-7

Uyeki, T. M., Hui, D. S., Zambon, M., Wentworth, D. E., & Monto, A. S. (2022). Influenza. *The Lancet*, *400*, 693–706. https://doi.org/10.1016/S0140-6736(22)00982-5

WHO | World Health Organization. (n.d.). *Respiratory Syncytial Virus (RSV) disease*. Retrieved August 10, 2023, from https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccine-standardization/respiratory-syncytial-virus-disease

WHO | World Health Organization. (2023a). *Coronavirus disease (COVID-19).* https://www.who.int/news-room/fact-sheets/detail/coronavirus-disease-(covid-19)

WHO | World Health Organization. (2023b). *Influenza (Seasonal)*. https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)

Zeng, Z.-Q., Chen, D.-H., Tan, W.-P., Qiu, S.-Y., Xu, D., Liang, H.-X., Chen, M.-X., Li, X., Lin, Z.-S., Liu, W.-K., & Zhou, R. (2018). Epidemiology and clinical characteristics of human coronaviruses OC43, 229E, NL63, and HKU1: a study of hospitalized children with acute respiratory tract infection in Guangzhou, China. *European Journal of Clinical Microbiology and Infectious Diseases*, *37*, 363–369. https://doi.org/10.1007/s10096-017-3144-z

Símbolos para reactivos y productos para diagnóstico in vitro

Producto para diagnóstico in vitro

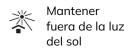
Almacenar en lugar seco

Fecha de caducidad

W Fabricante

LOT Número de lote

Consultar las instrucciones de uso


Lim
tem

 $\begin{array}{cccc} \text{Limitación} & \text{de} & & \\ \hline & & \\ \text{temperatura} & & \\ \end{array} \begin{array}{c} \text{Contiene} < \text{n} > \\ \text{test} \end{array}$

Identificación única de dispositivo

REF Número de referencia

Marca registrada

BD MAX™ es una marca registrada de Becton, Dickinson and Company.

Derechos de modificación reservados. Todos los derechos reservados. © Certest Biotec, S.L.

Todas las marcas comerciales que puedan aparecer en este prospecto pertenecen a sus respectivos propietarios.

...

Certest Biotec, S.L.

Pol. Industrial Río Gállego II, Calle J, Nº 1, 50840, San Mateo de Gállego, Zaragoza (España)

Tel. (+34) 976 520 354 | viasure@certest.es | www.certest.es

Información distribuidor en Australia: Becton Dickinson Pty Ltd., 66 Waterloo Road.

Macquarie Park NSW 2113, Australia

Información distribuidor en Nueva Zelanda: Becton Dickinson Limited, 14B George Bourke Drive.

Mt. Wellington Auckland 1060, New Zealand

Control de Cambios					
Versión n° Cambios F					
00	Versión original Esta versión es una traducción del documento en inglés: IUo-444221en0825.00	01/08/2025			

Tabla A 2. Tabla de control de cambios.

Revisión: 1 Agosto 2025

VIASURE by certest

www.certest.es

